approaches have been advanced to circumvent the initial
kinase-catalyzed phosphorylation step. The so-called ‘‘pro-
drug approach” suggests the use of nucleoside analogues in
an already phosphorylated form, masked with various
protecting groups. These prodrugs are designed to readily
penetrate into cells and easily convert intracellularly into
dNMPs.3,8
We propose to use boranophosphate diesters, in which one
of the nonbridging oxygen atoms of a phosphate diester
group is replaced by a borane group (BH3),9 as a candidate
for such a prodrug. As reviewed by Shaw,9f,g boranophos-
phates are more lipophilic and nuclease-resistant than the
normal phosphate diesters.9e,10a Our recent studies indicate
that the RP isomers of R-P-boronated dNTPs are better
substrates than natural dNTPs for viral DNA polymerases,11
making them more selective for incorporation into viral
DNA. Meyer et al.12 showed that the R-(RP)boranodiphos-
phate of AZT is a 10-fold better substrate for diphosphate
kinase than normal AZT diphosphate. Moreover, the R-(RP)-
boranotriphosphate of AZT has a 9-fold increased efficiency
with HIV-RT compared with normal AZT triphosphate
(AZTTP). The R-P-borano derivative of AZTTP has in-
creased stability toward repair mechanisms that contribute
to HIV drug resistance,12 possibly because an R-P-borono-
phosphate in DNA is more resistant to nuclease than normal
phosphate.9e Finally, boronated nucleotides may offer a
unique advantage over other modified congeners because
they could be used for boron neutron capture therapy
(BNCT),13 a radiation therapy that can selectively destroy
cells that have preferentially taken up boron. All of these
unique properties of boranophosphates make them promising
candidates for design of antiviral and anticancer prodrugs.
As a prototypic masking group, we have chosen L-tyrosine.
Amino acids are known as good carriers for the nucleoside
prodrugs, forming nontoxic hydrolysis products.8b,14 The
phenyl ester bond, present in tyrosine-containing conjugates,
is reported to be the most labile bond among the phenyl-,
benzyl-, and alkylphosphates15 because the negative charge
formed upon hydrolysis can be delocalized into the aromatic
ring. It facilitates the chemical or enzymatic hydrolysis of
the prodrugs to form the biologically active nucleotide
derivatives.
Specifically, in this article we report the first synthesis of
P-tyrosinyl(P-O)-5′-P-nucleosidyl boranophosphates 5.
Our first attempt to prepare the conjugate was based on
an H-phosphonate approach that we generally use for
synthesis of various nucleoside boranophosphate deriva-
tives.10 Condensation of uridine H-phosphonate 1 with
protected tyrosine 3 gave the compounds 4 in only 25-30%
yield after isolation (Scheme 1). Instability of the phenyl
H-phosphonate diester during silica gel chromatography
could be a reason for the low yield. Although subsequent
(4) (a) Tong, Y.; Liu-Chen, X.; Erickan-Abali, E. A.; Capiaux, G. M.;
Zhao, S.; Banedee, D.; Bertino, J. R. J. Biol. Chem. 1998, 273, 11611. (b)
Tong, Y.; Liu-Chen, X.; Ercikan-Abali, E. A.; Zhao, S.; Banedee, D.; Maley,
F.; Bertino, J. R. J. Biol. Chem. 1998, 273, 31209. (c) Landis, D. M.; Loeb,
L. A. J. Biol. Chem. 1998, 273, 25809. (d) Landis, D. M.; Gerlach, J. L.;
Adman, E. T.; Loeb, L. A. Nucleic Acids Res. 1999, 27, 3702. (e) Kitchens,
M. E.; Forsthoefel, A. M.; Barbour, K. W.; Spencer, H. T.; Berger, F. G.
Mol. Pharmacol. 1999, 56, 1063.
(5) Seno, T.; Ayusawa, D.; Shimizu, K.; Koyama, H.; Takeishi, K.; Hori,
T. Basic Life Sci. 1985, 31, 241.
(6) (a) Balzarini, J.; Cooney, D. A.; Dalal, M.; Kang, G.-J.; Cupp, J. E.;
De Clercq, E.; Broder, S.; Johns, D. G. Mol. Pharmacol. 1987, 32, 798.
(b) Starnes, M. G.; Cheng, Y.-C. J. Biol. Chem. 1987, 262, 988. (c) Hao,
Z.; Cooney, D. A.; Farquhar, D.; Perno, C. F.; Zhang, K.; Masood, R.;
Wilson, Y.; Hartman, N. R.; Balzarini, J.; Johns, D. G. Mol. Pharmacol.
1990, 37, 157. (d) Johnson, M. A.; Ahluwalia, G.; Connelly, M. C.; Cooney,
D. A.; Broder, S.; Johns, D. G.; Fridland, A. J. Biol. Chem. 1988, 263,
15354. (e) Johnson, M. A.; Fridland, A. Mol. Pharmacol. 1989, 36, 291.
(7) Perno, C. F.; Yarchoan, R.; Cooney, D. A.; Hartman, N. R.; Webb,
D. S. A.; Hao, Z.; Mitsuya, H.; Johns, D. G.; Broder, S. J. Exp. Med. 1989,
169, 933.
Scheme 1
(8) (a) Groschel, B.; Cinatl, J.; Perigaud, C.; Gosselin, G.; Imbach, J.
L.; Doerr, H. W.; Cinatl, J. AntiViral Res. 2002, 53, 143. (b) Shafiee, M.;
Deferme, S.; Villard, A. L.; Egron, D.; Gosselin, G.; Imbach, J. L.; Lioux,
T.; Pompon, A.; Varray, S.; Aubertin, A. M.; Van den Mooter, G.; Kinget,
R.; Perigaud, C.; Augustijns, P. J. Pharm. Sci. 2001, 90, 448. (c) Perigaud,
C.; Gosselin, G.; Lefebver, I.; Girardet, J. L.; Benzaria, S.; Barber, I.;
Imbach, J. L. Bioorg. Med. Chem. Lett. 1993, 3, 2521. (d) Jones, R. J.;
Bischofberger, W. AntiViral Res. 1995, 27, 1. (e) Meier, C. Synlett 1998,
233.
(9) (a) Sood, A.; Shaw, B. R.; Spielvogel, B. F. J. Am. Chem. Soc. 1990,
112, 9000. (b) Tomasz, J.; Shaw, B. R.; Porter, K.; Spielvogel, B. F.; Sood,
A. Angew. Chem., Int. Ed. Engl. 1992, 31, 1373. (c) Shaw, B. R.; Madison,
J.; Sood, A.; Spielvogel, B. F. Methods Mol. Biol. 1993, 20, 225. (d) Li,
H.; Hardin, C.; Shaw, B. R. J. Am. Chem. Soc. 1996, 118, 6606. (e) Porter,
K. W.; Briley, J. D.; Shaw, B. R. Nucleic Acids Res. 1997, 25, 1611. (f)
Shaw, B. R.; Sergueev, D.; He. K.; Porter. K.; Summers, J.; Sergueeva, Z.;
Rait, V. Method Enzymol. 2000, 313, 226. (g) Summers, J. S.; Shaw, B. R.
Curr. Med. Chem. 2001, 8, 1147. (h) Rait, V.; Shaw, B. R. Antisense Nucleic
Acid Drug DeV. 1999, 9, 53. (i) Lin, J.; Shaw, B. R. Chem. Commun. 2000,
2115.
(10) (a) Sergueev, D. S.; Shaw, B. R. J. Am. Chem. Soc. 1998, 120,
9417. (b) Sergueeva, Z. A.; Sergueev, D. S.; Shaw, B. R. Tetrahedron Lett.
1999, 40, 2041. (c) He, K.; Sergueeva, D. S.; Sergueeva, Z. A.; Shaw, B.
R. Tetrahedron Lett. 1999, 40, 4601.
(11) Unpublished results.
(12) Meyer, P.; Schneider, B.; Sarfati, S.; Deville-Bonne, D.; Guerreiro,
C.; Boretto, J.; Janin, J.; Veron, M.; Canard, B. EMBO J. 2000, 19, 3520.
2010
Org. Lett., Vol. 4, No. 12, 2002