C O M M U N I C A T I O N S
Scheme 2. Synthesis of Methylenephosphonates 2a
poral coordination of lipid production and removal are likely
required for normal physiology, and thus PtdIns(3,4,5)P3 is neces-
sary but not sufficient to fully mimic the action of insulin.
We tested the binding of the 3-PT and 3-MP analogues to the
specific PtdIns(3,4,5)P3-binding protein Grp1 (Supporting Informa-
tion Figure 2). DiC8-3-PT-PtdIns(3,4,5)P3 1b bound to Grp1 with
5-fold reduced affinity relative to that of diC8-PtdIns(3,4,5)P3, but
the diC8-3-MP analogue 2b showed no binding at all. Moreover,
while PTEN rapidly hydrolyzed diC8-PtdIns(3,4,5)P3, no hydrolysis
was observed with either 1b or 2b (Supporting Information Figure
3). Interestingly, diC8-3-PT analogue 1b showed >90% inhibition
of PTEN activity at 0.4 µM, while the diC8-3-MP analogue 2b
required 40 µM for >90% inhibition (A. Branch, P. Neilsen,
personal communication). Thus, analogues 1 and 2 have potential
as protein-selective biological tools in the PI 3-K signaling pathway.
Additional functional assays and interactions with PTEN will be
reported in due course.
a Conditions: (a) DIBAL-H, CH2Cl2, -78 °C, 88%; (b) n-BuLi, HMPA,
dimethyl phosphonomethyltriflate, THF, -78 °C to rt, 80%; (c) TBAF,
THF, 90%; (d) N,N-dimethylphosphoramidite, 1H-tetrazole, m-CPBA, 95%;
(e) TBAF‚3H2O, DMF, 75%; (f) 1H-tetrazole, 8a-d, CH2Cl2, rt, t-BuOOH;
(g) TEA, BSTFA, CH3CN; (h) TMSBr/CH2Cl2 (2:3), rt; (i) MeOH.
Acknowledgment. We thank the NIH (NS 29632 to GDP) and
the “Fonds de la Recherche Scientifique Me´dicale” for support,
Dr. C. Ferguson (Echelon Biosciences, Inc.) for Grp1 binding data,
and Dr. P. Neilsen and Ms. A. Branch (Echelon) for PtdIns(3,4,5)-
P3, histone, PTEN, and assistance with the PTEN assays.
Supporting Information Available: Experimental details for
synthesis, characterization of new compounds, binding data, and PTEN
assays. This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Prestwich, G. D. Chem. Biol. 2004, 11, 619-637.
(2) Drees, B. E.; Mills, G. B.; Rommel, C.; Prestwich, G. D. Exp. Opin. Ther.
Patents 2004, 14, 703-732.
Figure 1. Stimulation of A6 cell monolayers. Experimental details for
triplicate measurements of sodium transport (INa , µA/cm ) are in the
Supporting Information. A representative result is illustrated.
2
19
+
(3) Traynor-Kaplan, A. E.; Harris, A. L.; Thompson, B. L.; Taylor, P.; Sklar,
L. A. Nature 1988, 334, 353-356.
(4) Toker, A.; Cantley, L. C. Nature 1997, 387, 673-676.
(5) Cantley, L. C.; Auger, K. R.; Carpenter, C.; Duckworth, B.; Graziani,
A.; Kapeller, R.; Soltoff, S. Cell 1991, 64, 281-302.
followed by coupling with the phosphoramidites 8a-d gave
protected lipids 12a-d. Removal of the protective groups gave the
3-MP-PtdIns(3,4,5)P3 analogues 2a-d.
(6) Pinal, N.; Goberdhan, D. C.; Collinson, L.; Fujita, Y.; Cox, I. M.; Wilson,
C.; Pichaud, F. Curr. Biol. 2006, 16, 140-149.
(7) Sweeney, G.; Garg, R. R.; Ceddia, R. B.; Li, D.; Ishiki, M.; Somwar, R.;
Foster, L. J.; Neilsen, P. O.; Prestwich, G. D.; Rudich, A.; Klip, A. J.
Biol. Chem. 2004, 279, 32233-32242.
To test the function of these analogues, we used carrier-mediated
intracellular delivery18 of PtdIns(3,4,5)P3, which is known to activate
GLUT4 translocation to the plasma membrane7 and sodium
transport.19 The physiological function of the 3-PT- and 3-MP-
PtdIns(3,4,5)P3 analogues was examined in A6 cell monolayers, a
renal epithelium model that expresses epithelial sodium channels
(ENaC).20 ENaC activity is the rate-limiting step of the sodium
transport and is stimulated by insulin.21 DiC16-PtdIns(3,4,5)P3 is
an early mediator of the insulin-stimulated sodium transport in A6
cells.19 Thus, we compared the effect of the unmodified diC16-
PtdIns(3,4,5)P3 with diC16-3-PT-PtdIns(3,4,5)P3 1c and diC16-
3-MP-PtdIns(3,4,5)P3 2c on sodium transport across confluent
monolayers of A6 cells. As shown in Figure 1, apical addition of
either 1c or 2c increased sodium transport. Moreover, the 3-MP
analogue 2c was the most potent and long-lived mediator of sodium
transport, and the 3-PT analogue 1c also extended sodium transport
compared to unstabilized PtdIns(3,4,5)P3. The lag time observed
between PtdIns(3,4,5)P3 analogue addition and the final effect on
sodium transport was due to intracellular delivery. The spatiotem-
(8) Maehama, T.; Dixon, J. E. Trends Cell. Biol. 1999, 9, 125-128.
(9) Pesesse, X.; Deleu, S.; De Smedt, F.; Drayer, L.; Erneux, C. Biochem.
Biophys. Res. Commun. 1997, 239, 697-700.
(10) Lampe, D.; Liu, C.; Potter, B. V. J. Med. Chem. 1994, 37, 907-912.
(11) Murray, A. W.; Atkinson, M. R. Biochemistry 1968, 7, 4023-4029.
(12) Hampton, A.; Brox, L. W.; Bayer, M. Biochemistry 1969, 8, 2303-2311.
(13) Xu, Y.; Lee, S. A.; Kutateladze, T. G.; Sbrissa, D.; Shisheva, A.; Prestwich,
G. D. J. Am. Chem. Soc. 2006, 128, 885-897.
(14) Gajewiak, J.; Xu, Y.; Lee, S. A.; Kutateladze, T.; Prestwich, G. D. Org.
Lett. 2006, 8, 2811-2813.
(15) Bruzik, K. S.; Tsai, M.-D. J. Am. Chem. Soc. 1992, 114, 6361-6374.
(16) Kubiak, R. J.; Bruzik, K. S. J. Org. Chem. 2003, 68, 960-968.
(17) Dreef, C. E.; Mayr, G. W.; Jansze, J.-P.; Roelen, H. C. P. F.; Van der
Marel, G. A.; van Boom, J. H. Bioorg. Med. Chem. Lett. 1991, 1, 239-
242.
(18) Ozaki, S.; DeWald, D. B.; Shope, J. C.; Chen, J.; Prestwich, G. D. Proc.
Natl. Acad. Sci. U.S.A. 2000, 97, 11286-11291.
(19) Markadieu, N.; Blero, D.; Boom, A.; Erneux, C.; Beauwens, R. Am. J.
Physiol. Renal. Physiol. 2004, 287, F319-328.
(20) Handler, J.; Perkins, F.; Johnson, J. Am. J. Physiol. Cell Physiol. 1981,
240, C103-C105.
(21) Rossier, B. C.; Canessa, C. M.; Schild, L.; Horisberger, J. D. Curr. Opin.
Nephrol. Hypertens. 1994, 3, 487-496.
JA065002J
9
J. AM. CHEM. SOC. VOL. 128, NO. 51, 2006 16465