L. W. Habel et al. / Tetrahedron Letters 45 (2004) 4057–4059
4059
Table 1. Oxidation of vinyl 1,2-diols to vinyl 1,2-diketones
chromatographic column. Isolated yields after chroma-
tography are between 11% and 60%.
8. Grove, J. F. J. Chem. Soc., Perkin Trans. 1 1985, 865.
9. Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem.
1978, 43, 2480.
10. Ma, Z.; Bobbitt, J. M. J. Org. Chem. 1991, 56, 6110.
11. de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H.
Synthesis 1996, 1153.
12. Banwell, M. G.; Bridges, V. S.; Dupuche, J. R.; Richards,
S. L.; Walter, J. M. J. Org. Chem. 1994, 59, 6338.
13. Yamaguchi, M.; Takata, T.; Endo, T. Tetrahedron Lett.
1988, 29, 5671.
Compound
R¼
–CH3
Isolated yield (%)
3a
3b
3c
3d
3e
3f
16
51
50
28
75
52
–(CH2)3CH3
–(CH2)5CH3
–CH(CH3)2
–Ph
–(CH2)2Ph
vinyl phenyl 1,2-diketone 3e, in which the phenyl group
is directly conjugated with the vinyl 1,2-diketone moiety.
These data show that, even if reaction times are long, the
newly proposed route provides access to virtually all
aliphatic or aromatic vinyl 1,2-diketones.
14. For the synthesis of vinyl 1,2-diketones, 0.5 mmol of the
diols 2a–f were dissolved in 3 mL dichloromethane and
cooled to 0 ꢁC. Then 475 mg (2.5 mmol) of p-toluenesulf-
onic acid were added and the flask was closed with a
rubber septum. Subsequently, the solution of 533 mg
(2.5 mmol) 4-acetamido-TEMPO in 5 mL dichloro-
methane was added via a needle over 15–30 min. The
reaction mixture was allowed to warm-up to room
temperature overnight and stirred for 4–7 days until TLC
control showed completion. The solvent was evaporated
and the residue chromatographed on a silica gel column
(1 · 20 cm) using diethyl ether as eluent. Methyl vinyl 1,2-
diketone, 4-penten-2,3-dione (3a). 1H NMR (CDCl3,
300 MHz): d 7.01 (dd, 1H, J ¼ 10:6, 17.6 Hz), 6.53 (dd,
1H, J ¼ 1:5, 17.6 Hz), 6.04 (dd, 1H, J ¼ 1:5, 10.6 Hz), 2.40
(s, 3H); 13C NMR (CDCl3) 198.7, 187.6, 134.1, 129.1, 24.7;
MS (EI) m=z 98 (Mþ, 8), 55 (34), 43 (100). Butyl vinyl 1,2-
diketone, 1-octene-3,4-dione (3b). 1H NMR (CDCl3): d
6.99 (dd, 1H, J ¼ 10:2, 17.6 Hz), 6.52 (dd, 1H, J ¼ 1:5,
17.6 Hz), 6.04 (dd, 1H, J ¼ 1:5, 10.2 Hz), 2.80 (t, 2H,
J ¼ 7:3 Hz), 1.60 (quintet, 2H, J ¼ 7:3 Hz), 1.36 (sextet,
2H, J ¼ 7:3 Hz), 0.93 (t, 3H, J ¼ 7:3 Hz); 13C NMR
(CDCl3): d 201.2, 188.3, 133.8, 129.6, 36.8, 25.4, 22.6, 14.1;
MS (EI) m=z, 140 (Mþ, 2), 111 (3), 85 (35), 57 (60), 55
(100). Hexyl vinyl 1,2-diketone, 1-decene-3,4-dione (3c).
1H NMR (CDCl3): d 6.99 (dd, 1H, J ¼ 10:6, 17.6 Hz), 6.52
(dd, 1H, J ¼ 1:5, 17.6 Hz), 6.03 (dd, 1H, J ¼ 1:5, 10.6 Hz),
2.80 (t, 2H, J ¼ 7:3 Hz), 1.61 (quintet, 2H, J ¼ 7:3 Hz),
1.35–1.26 (m, 6H), 0.88 (t, 3H, J ¼ 7:3 Hz); 13C NMR
(CDCl3): d 201.4, 188.4, 133.9, 129.7, 37.2, 31.9, 29.2, 23.3,
22.8, 14.4; MS (EI) m=z 168 (Mþ, 1), 139 (1), 125 (2), 113
(82), 111 (2), 85 (28), 57 (19), 55 (100). Isopropyl vinyl 1,2-
diketone, 5-methyl-1-hexene-3,4-dione (3d). 1H NMR
(CDCl3): d 6.93 (dd, 1H, J ¼ 11:0, 17.6 Hz), 6.47 (dd,
1H, J ¼ 1:5, 17.6 Hz), 6.05 (dd, 1H, J ¼ 1:5, 11.0 Hz),
2.09–2.19 (m, 1H), 1.12 (d, 6H, J ¼ 7:3 Hz); 13C NMR
(CDCl3): d 201.3, 189.4, 133.5, 130.5, 34.8, 17.4; MS (EI)
m=z 126 (Mþ, 5), 71 (34), 55 (100). Phenyl vinyl 1,2-
diketone, 1-phenyl-3-butene-1,2-dione (3e). 1H NMR
Summarizing, the new route to vinyl 1,2-diketones is
short; it starts from simple and cheap molecules, and
there is no need to use protecting or activating groups.
The singlet oxygen reaction used to obtain the diols is
only one of several possible ways to obtain the appro-
priate starting material 2 for the oxidation. The present
route to vinyl 1,2-diketones will enable further trans-
formation of these synthons, for example, via selective
oxidation, or by incorporation in heterocycles.
Supplementary information available
NMR data for vinyl 1,2-diols and acyloins.
Acknowledgements
We thank IWT (L.W.H., J.V.) for support. P.A.J. and
J.V. are indebted to the Belgian Federal Government for
support in the frame of an IAP project Supramolecular
Catalysis.
References and notes
1. Katritzky, A. R.; Rees, C. W. Comprehensive Heterocyclic
Chemistry; Pergamon: Oxford, 1996.
2. Kramme, R.; Martin, H.-D.; Mayer, B.; Weimann, R.
Angew. Chem. 1986, 98, 1134.
3. Pictet, G.; Karrer, P. Helv. Chim. Acta 1954, 37, 1720.
4. Katritzky, A. R.; Wang, Z.; Lang, H.; Feng, D. J. Org.
Chem. 1997, 62, 4125.
5. Ciufolini, M. A.; Roschangar, F. J. Am. Chem. Soc. 1998,
118, 12082.
6. (a) Adam, W.; Nestler, B. J. Am. Chem. Soc. 1993, 115,
(CDCl3):
d
7.97 (d, 2H, J ¼ 7:3 Hz), 7.66 (t, 1H,
J ¼ 7:3 Hz), 7.51 (t, 2H, J ¼ 7:3 Hz), 6.75 (dd, 1H,
J ¼ 11:0, 17.6 Hz), 6.41 (d, 1H, J ¼ 17:6 Hz), 6.24
(d, 1H, J ¼ 11:0 Hz); 13C NMR (CDCl3): d 193.7, 193.2,
135.2 (2C), 133.2, 132.9, 130.4, 129.3; MS (EI) m=z 160
(Mþ, 13), 105 (95), 77 (100), 55 (55). (2-Phenyl)ethyl vinyl
1,2-diketone, 1-phenyl-5-hexene-3,4-dione (3f). 1H NMR
(CDCl3): d 7.28–7.20 (m, 5 H), 6.98 (dd, 1H, J ¼ 10:6,
17.6 Hz), 6.50 (dd, 1H, J ¼ 1:5, 17.6 Hz), 6.02 (dd, 1H,
J ¼ 1:5, 10.6 Hz), 3.16 (t, 2H, J ¼ 7:5 Hz), 2.95 (t, 2H,
J ¼ 7:5 Hz); 13C NMR (CDCl3): d 200.0, 187.9, 140.7,
134.1, 129.4, 128.9, 128.7, 126.7, 38.7, 29.3; MS (EI) m=z
188 (Mþ, 5), 91 (15), 77 (30), 55 (100).
ꢀ
5041; (b) Adam, W.; Dıaz, M. T.; Saha-Moller, C. R.
Tetrahedron: Asymmetry 1998, 9, 589.
€
7. For the photooxidation, 20 mmol olefin was dissolved in
20 mL CCl4 at 0 ꢁC, together with 10 mg 5,10,15,20-
tetraphenyl-21H,23H-porphine. A pure oxygen atmo-
sphere was maintained, and the flask was irradiated by a
400 W lamp for 3–7 days. After reduction with PPh3, the
allylic alcohols were isolated by work-up on a SiO2
15. In a test reaction we could isolate 3-hydroxy-1-phenyl-
hex-5-en-4-one 4f with a yield of 98%.
€
16. Adam, W.; Diaz, M. T.; Saha-Moller, C. R. Tetrahedron:
Asymmetry 1998, 9, 791.