A Zig-Zag [MnII4] Cluster from a Novel Bis(β-diketonate) Ligand
SHORT COMMUNICATION
[12]
D. J. Cardenas, J. P. Collin, P. Gavina, J. P. Sauvage, A.
De Cian, J. Fischer, N. Armaroli, L. Flamigni, V. Vicinelli, V.
Balzani, J. Am. Chem. Soc. 1999, 121, 5481.
[13]
[14]
L. Thompson, Can. J. Chem. – Rev. Can. Chim. 2005, 83, 77.
Y. H. Chen, C. C. Lee, C. C. Wang, G. H. Lee, S. Y. Lai, F. Y.
Li, C. Y. Mou, S. M. Peng, Chem. Commun. 1999, 1667.
G. Aromí, P. Gamez, P. C. Berzal, W. L. Driessen, J. Reedijk,
Synth. Commun. 2003, 33, 11.
G. Aromí, C. Boldron, P. Gamez, O. Roubeau, H. Kooijman,
A. L. Spek, H. Stoeckli-Evans, J. Ribas, J. Reedijk, Dalton
Trans. 2004, 3586.
[15]
[16]
[17]
[18]
[19]
G. Aromí, J. Ribas, P. Gamez, O. Roubeau, H. Kooijman, A. L.
Spek, S. Teat, E. MacLean, H. Stoeckli-Evans, J. Reedijk,
Chem. Eur. J. 2004, 10, 6476.
G. Aromí, P. Gamez, O. Roubeau, P. Carrero-Berzal, H. Kooij-
man, A. L. Spek, W. L. Driessen, J. Reedijk, Eur. J. Inorg.
Chem. 2002, 1046.
G. Aromí, P. C. Berzal, P. Gamez, O. Roubeau, H. Kooijman,
A. L. Spek, W. L. Driessen, J. Reedijk, Angew. Chem. Int. Ed.
2001, 40, 3444.
Figure 4. Plot of χMT vs. T per mol of [Mn4(H2L3)2(AcO)2(py)5]
(1). The solid line is a fit to the experimental data (see text for
details). The inset shows the model and spin coupling scheme used
for the fitting procedure.
[20]
[21]
See Supporting Information for experimental details on or-
ganic synthesis and characterization of H5L3 and H4L4.
Crystals of H5L3 and 1 were measured with a Nonius Kap-
paCCD diffractometer on a rotating anode (θmax = 25.3°, T =
150 K, Mo-Kα radiation, λ = 0.71073 Å, no absorption correc-
tion). The structures were solved with direct methods and re-
fined on F2 (SHELXL-97). Pertinent data for H5L3: C24H18O7,
yellow block-shaped crystal (0.10×0.25×0.35 mm), ortho-
rhombic, space group Pbcn (no. 60) with a = 13.9229(15), b =
8.5263(12), c = 32.190(5) Å, V = 3821.3(9) Å3, Z = 8, 18194
The preparation of H5L3 and its association with MnII
ions have demonstrated that rigid ligands with linearly dis-
posed O-donors do provide access to metallic coordination
chains with interesting magnetic properties, difficult to ob-
tain otherwise. The preparation of 1 offers a very promising
prospect in this direction. We are currently exploring the
coordination chemistry of this new ligand with other metals
and in the presence of other small co-ligands.
reflections measured, 3410 independent, Rint = 0.1106, Rσ
=
Supporting Information (see footnote on the first page of this arti-
0.0664. The structure was solved with SHELXS-86. All hydro-
gen atoms could be located on a difference Fourier map and
their coordinates were refined. Refinement of 334 parameters
converged at a final wR2 value of 0.1254, R1 = 0.0468 [for 2302
reflections with I Ͼ 2σ(I)], S = 1.044, –0.22 Ͻ ∆ρ Ͻ 0.20 e·Å–3.
Pertinent data for 1: C77H61Mn4N5O18+solvent (vide infra),
pale orange blockshaped crystal (0.05×0.18×0.35 mm), tri-
cle): This material includes the description of the preparation of
1
ligands H5L3 and H4L4, full H NMR characterization of the li-
gands and the COSY diagram of H5L3.
Acknowledgments
¯
clinic, space group P1 (no. 2) with a = 10.8441(10), b =
18.591(2), c = 20.904(3) Å, α = 85.172(15), β = 77.893(15), γ =
87.872(15)°, V = 4105.1(9) Å3, Z = 2, 83947 reflections mea-
sured, 14832 independent, Rint = 0.0443, Rσ = 0.0330. The
structure was solved with SHELXL-97. Electron density in a
cavity with a volume of 896 Å3, filled with a disordered mixture
of Et2O and pyridine, was taken into account in the refinement
with PLATON/SQUEEZE. A total number of 321 electrons
per unit cell were found. Where relevant, data cited above are
given without disordered solvent contribution. The coordi-
nated pyridine molecule containing N11 is disordered and is
described with a two-site disorder model. The hydroxy hydro-
gen atoms could be located on a difference Fourier map and
their coordinates were refined. All other hydrogen atoms were
included with calculated positions and riding on their carrier
atoms. Refinement of 967 parameters converged at a final wR2
value of 0.1203, R1 = 0.0407 [for 11825 reflections with I Ͼ
2σ(I)], S = 1.074, –0.44 Ͻ ∆ρ Ͻ 0.59 e·Å–3. CCDC-293439
and -293440 contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
K. Tatsuta, M. Chino, N. Kojima, S. Shinojima, M. Nakata,
M. Morooka, S. Ohba, Tetrahedron Lett. 1993, 34, 4957.
V. Bertolasi, P. Gilli, V. Ferretti, G. Gilli, J. Chem. Soc., Perkin
Trans. 2 1997, 945.
Elemental analysis reveals partial substitution of pyridine by
water upon exposure to air. Calcd. (found) for 1 (– 1.5py +
1·5H2O): C 56.69 (56.86), H 3.87 (3.68), N 3.33 (3.09).
D. Cremer, J. A. Pople, J. Am. Chem. Soc. 1975, 97, 1354.
H. Andres, R. Basler, H. U. Güdel, G. Aromí, G. Christou, H.
Buttner, B. Ruffle, J. Am. Chem. Soc. 2000, 122, 12469.
This work was supported by grants from the Spanish Ministerio de
Ciencia y Tecnología, the Agència de Gestió d’Ajuts Univesitaris i
de Recerca (Generalitat de Catalunya), the Dutch WFMO (Werk-
groep Fundamenteel-Materialen Onderzoek) and the CW-NWO
(Council for Chemical Sciences of the Netherlands Organization
for Scientific Research).
[1] J. S. Miller, M. Drillon, in: Magnetism: Molecules to Materials
V (Eds.: J. S. Miller, M. Drillon), Wiley-VCH, Weinheim, 2005.
[2] G. Aromí, E. K. Brechin, Struct. Bonding, DOI: 10.1007/430_
022.
[3] R. D. Adams, F. A. Cotton, in Catalysis by Di- and Polynuclear
Metal Cluster Complexes (Eds.: R. D. Adams, F. A. Cotton),
Wiley-VCH, New York, 1999.
[4] H. A. O. Hill, P. J. Sadler, A. J. Thompson, in Metal Sites in
Proteins and Models (Eds.: H. A. O. Hill, P. J. Sadler, A. J.
Thompson), Springer, Berlin, 1999, vol. 1–3.
[5] P. V. Rao, R. H. Holm, Chem. Rev. 2004, 104, 527.
[6] R. E. P. Winpenny, Adv. Inorg. Chem. 2001, 52, 1.
[7] G. Aromí, S. M. J. Aubin, M. A. Bolcar, G. Christou, H. J. Ep-
pley, K. Folting, D. N. Hendrickson, J. C. Huffman, R. C.
Squire, H. L. Tsai, S. Wang, M. W. Wemple, Polyhedron 1998,
17, 3005.
[8] R. E. P. Winpenny, J. Chem. Soc., Dalton Trans. 2002, 1.
[9] C. Piguet, G. Bernardinelli, G. Hopfgartner, Chem. Rev. 1997,
97, 2005.
[10] G. S. Hanan, D. Volkmer, J. M. Lehn, Can. J. Chem. – Rev.
Can. Chim. 2004, 82, 1428.
[11] D. W. Johnson, J. D. Xu, R. W. Saalfrank, K. N. Raymond, An-
gew. Chem. Int. Ed. 1999, 38, 2882.
[22]
[23]
[24]
[25]
[26]
Eur. J. Inorg. Chem. 2006, 1940–1944
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
1943