W. Petz, F. Öxler, B. Neumüller, R. Tonner, G. Frenking
FULL PAPER
(N = constant) of the product wave function.[49a] ∆EPauli comprises
the destabilizing interactions between electrons of the same spin on
either fragment. The orbital interaction, ∆Eorb, accounts for charge
transfer and polarization effects.[55] The ∆Eorb term can be decom-
posed into contributions from each irreducible representation of
the point group of the interacting system. The molecules investi-
gated show C2v symmetry, which makes it possible to distinguish
between σ-contributions (a1) and π-contributions arising from in-
plane (b2) πʈ orbitals and out-of-plane (b1) πЌ orbitals. The energy
contributions from orbitals which possess δ symmetry (a2) are neg-
ligible for the investigated molecules; see Equation (2).
[12] a) R. Tonner, G. Frenking, Chem. Eur. J. 2008, 14, 3260; b) R.
Tonner, G. Frenking, Chem. Eur. J. 2008, 14, 3273.
[13] a) R. Tonner, G. Heydenrych, G. Frenking, ChemPhysChem.
2008, 9, 1474; b) G. Frenking, R. Tonner, Pure Appl. Chem.
2009, 81, 597.
[14] C. A. Dyker, V. Lavallo, B. Donnadieu, G. Bertrand, Angew.
Chem. 2008, 120, 3250; Angew. Chem. Int. Ed. 2008, 47, 3206.
[15] R. Tonner, G. Frenking, Angew. Chem. 2007, 119, 8850; Angew.
Chem. Int. Ed. 2007, 46, 8695.
[16] W. Petz, C. Kutschera, S. Tschan, F. Weller, B. Neumüller, Z.
Anorg. Allg. Chem. 2003, 629, 1235.
[17] a) W. Petz, F. Weller, J. Uddin, G. Frenking, Organometallics
1999, 18, 619; b) J. Sundermeyer, K. Weber, K. Peters, H. G.
von Schnering, Organometallics 1994, 13, 2560; c) H. Schmid-
baur, C. E. Zybill, G. Müller, C. Krüger, Angew. Chem. 1983,
95, 753; Angew. Chem. Int. Ed. Engl. 1983, 22, 729.
[18] a) H. Schmidbaur, C. E. Zybill, D. Neugebauer, Angew. Chem.
1982, 94, 321; Angew. Chem. Int. Ed. Engl. 1982, 21, 310; b)
H. Schmidbaur, C. Zybill, D. Neugebauer, G. Müller, Z. Natur-
forsch., Teil B 1985, 40, 1293; c) W. Petz, C. Kutschera, B. Ne-
umüller, Organometallics 2005, 24, 5038; d) W. Petz, F. Weller,
C. Kutschera, M. Heitbaum, G. Frenking, R. Tonner, B. Ne-
umüller, Inorg. Chem. 2005, 44, 1263.
∆Eorb (C2v) = ∆Eσ(a1) + ∆Eδ(a2) + ∆EπЌ(b1) + ∆Eπʈ(b2)
(2)
To obtain the bond dissociation energy (BDE; by definition with
the opposite sign to ∆E), the preparation energy, ∆Eprep, which
gives the relaxation of the fragments into their electronic and geo-
metric ground states, must be added to ∆Eint; see Equation (3).
∆E (= –BDE) = ∆Eint + ∆Eprep
(3)
[19] W. Petz, B. Neumüller, unpublished results.
Further details regarding the EDA method and its application to
analysis of the chemical bond[56] can be found in the literature.
[20] J. Vicente, A. R. Singhal, P. G. Jones, Organometallics 2002, 21,
5887.
[21] N. Kuhn, G. Henkel, T. Kratz, J. Kreutzberg, R. Boese, A. H.
Maulitz, Chem. Ber. 1993, 126, 2041.
[22] a) H. Schmidbaur, G. Müller, B. Milewski-Mahrla, U. Schu-
bert, Chem. Ber. 1980, 113, 2575; b) H. Schmidbaur, G. Müller,
G. Blaschke, Chem. Ber. 1980, 113, 1480.
Supporting Information (see footnote on the first page of this arti-
cle): Table with the calculated geometries and energies of the mole-
cules.
[23]
A. C. Venkatacher, R. C. Taylor, R. L. Kuczkowski, J. Mol.
Struct. 1977, 38, 17.
Acknowledgments
[24]
J. F. Stevens Jr., J. W. Bevan, R. F. Curl Jr., R. A. Geanangel,
M. Crace Hu, J. Am. Chem. Soc. 1977, 99, 1442.
H. Schmidbaur, T. Costa, Chem. Ber. 1981, 114, 3063.
V. L. Rudzevich, H. Gornizka, V. D. Romanenko, G. Bertrand,
Chem. Commun. 2001, 1634.
We thank the Deutsche Forschungsgemeinschaft (DFG) for finan-
cial support. W. P. is also grateful to the Max-Planck-Gesellschaft,
Munich for financial support, and R. T. thanks the Alexander von
Humboldt-Stiftung for financial support (postdoctoral fellowship).
[25]
[26]
[27]
[28]
Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, 101.
ed., Walter de Gruyter, Berlin, New York 1995.
T. J. Coffy, G. Medford, J. Plotkin, G. J. Long, J. C. Huffman,
S. G. Shore, Organometallics 1989, 8, 2404.
Gmelin, Borwasserstoff Verbindungen, vol. 18.
Gmelin, Handbook of inorganic chemistry boron compounds, 1st
suppl., vol. 1.
Gmelin, Handbook of inorganic chemistry B, 4th suppl. vol. 1b
and references therein.
G. F. Mitchel, A. J. Welch, J. Chem. Soc., Dalton Trans. 1987,
1017.
[1] C. Elschenbroich, Organometallchemie, 4. ed., Teubner Verlag,
Stuttgart, Leipzig, Wiesbaden, 2003.
[2] S. F. Vyboishchikov, G. Frenking, Chem. Eur. J. 1998, 4, 1439.
[3] a) R. G. Carlsson, M. A. Gile, J. A. Heppert, M. H. Mason,
D. R. Powell, D. Vander Velde, J. M. Vilain, J. Am. Chem. Soc.
2002, 124, 1580; b) A. Hejl, T. M. Trnka, M. W. Day, R. H.
Grubbs, Chem. Commun. 2002, 2524; c) S. R. Caskey, M. H.
Stewart, J. E. Kivela, J. R. Sootsman, M. J. A. Johnson, J. W.
Kampf, J. Am. Chem. Soc. 2005, 127, 16750; d) M. H. Stewart,
M. J. A. Johnson, J. W. Kampf, Organometallics 2007, 26, 5102.
[4] a) A. Krapp, G. Frenking, J. Am. Chem. Soc. 2008, 130, 16646;
b) A. Krapp, K. K. Pandey, G. Frenking, J. Am. Chem. Soc.
2007, 129, 7596.
[29]
[30]
[31]
[32]
[33]
W. Petz, M. Fahlbusch, E. Gromm, B. Neumüller, Z. Anorg.
Allg. Chem. 2008, 634, 682.
S. Grimme, Acc. Chem. Res. 2008, 41, 569.
[34]
[35]
R. Appel, F. Knoll, H. Schöler, H.-D. Wihler, Angew. Chem.
1976, 88, 769; Angew. Chem. Int. Ed. Engl. 1976, 15, 701.
Handbuch der präparativen Anorganischen Chemie, vol. 2 (Ed.:
G. Brauer), F. Enke Verlag, Stuttgart, 3rd ed., 1978.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T.
Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morok-
uma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzew-
ski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V.
Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B.
[5] W. A. Hermann, T. Weskamp, V. P. W. Böhm, Adv. Organomet.
Chem. 2002, 48, 1.
[36]
[37]
[6] A. W. Johnson, Ylides and Imines of Phosphorus, Wiley-Inter-
science Publication, New York, Chichester, Brisbane, Toronto,
Singapore, 1993.
[7] M. J. Calhorda, A. Krapp, G. Frenking, J. Phys. Chem. A 2007,
111, 2859.
[8] a) R. R. Schrock, Acc. Chem. Res. 1979, 12, 98; b) T. E. Taylor,
M. B. Hall, J. Am. Chem. Soc. 1984, 106, 1576; c) N. Kuhn, A.
Al-Sheikh, Coord. Chem. Rev. 2005, 249, 829 and references
therein.
[9] F. Ramirez, N. B. Desai, B. Hansen, N. McKelvie, J. Am.
Chem. Soc. 1961, 83, 3539.
[10] A. T. Vincent, P. Wheatley, J. Chem. Soc., Dalton Trans. 1972,
617.
[11] W. Petz, B. Neumüller, G. Frenking, R. Tonner, Angew. Chem.
2006, 118, 8206; Angew. Chem. Int. Ed. 2006, 45, 8038 and
references therein.
4516
www.eurjic.org
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2009, 4507–4517