Mendeleev Commun., 2010, 20, 132–134
References
N
1
2
M. A. Jordan and L. Wilson, Nature Rev. Cancer, 2004, 4, 253.
A. S. Kiselyov, K. Balakin, S. E. Tkachenko and A. V. Ivachtchenko,
Anti-Cancer Agents in Medicinal Chemistry, 2007, 7, 189.
L. Wordenmam and T. J. Mitchison, in Microtubules, eds. J. S. Hyams
and C. W. Lloyd, Wiley-Liss, New York, 1994, p. 287.
E. K. Rowinsky, V. Chaudhry, D. R. Cornblath and R. C. Donehower,
J. Natl. Cancer Inst., 1993, 15, 107.
H. C. Pitot, E. A. McElroy, Jr., J. M. Reid, A. J. Windebank, J. A. Sloan,
C. Erlichman, P. G. Bagniewski, D. L. Walker, J. Rubin, R. M. Goldberg,
A. A. Adjei and M. M. Ames, Clin. Cancer Res., 1999, 5, 525.
S. P. Cole, K. E. Sparks, K. Fraser, D. W. Loe, C. E. Grant, G. M. Wilson
and R. G. Deeley, Cancer Res., 1994, 54, 5902.
O2N
NO2
NH
N
NO2
3
4
5
i
N
N
N
O
O
12
13
6
7
8
9
N
A. Lorico, G. Rappa, R. A. Flavell and A. C. Sartorelli, Cancer Res.,
1996, 56, 5351.
NH
N
O
OMe
M. Kavallaris, D. Y. S. Kuo, C. A. Burkhart, D. L. Regl, M. D. Norris,
M. Haber and B. Horwitz, J. Clin. Invest., 1997, 100, 1282.
P. Giannakakou, D. L. Sackett, Y. K. Kang, Z. Zhan, J. T. Buters, T. Fojo
and M. S. Poruchynsky, J. Biol. Chem., 1997, 272, 17118.
ii
N
O
14
10 E. Nogales, M. Whittaker, R. A. Milligan and K. H. Downing, Cell,
1999, 96, 79.
Scheme 2 Reagents and conditions: i, p-PyCH2NH2, CH2Cl2, Et3N, room
temperature; ii, p-MeOC6H4OH, K2CO3, DMSO, 80–100 °C.
11 T. Brown, H. Holt and M. Lee, Top. Heterocycl. Chem., 2006, 7081.
12 G. C. Tron, F. Pagliai, E. D. Grosso, A. A. Genazzani and G. Sorba,
J. Med. Chem., 2005, 48, 3260.
13 X. Ouyang, E. L. Piatnitski, V. Pattaropong, X. Chen, H.-Y. He, A. S.
Kiselyov, A. Velankar, J. Kawakami, M. Labelle, L. Smith II, J. Lohman,
S. P. Lee, A. Malikzay, J. Fleming, J. Gerlak, Y. Wang, R. L. Rosler,
K. Zhou, S. Mitelman, M. Camara, D. Surguladze, J. F. Doody and
M. C. Tuma, Bioorg. Med. Chem. Lett., 2006, 16, 1191.
(a)
(b)
(d)
14 X. Ouyang, A. Kiselyov, X. Chen, H.-Y. J. He, J. Kawakami, V. Pattaropong
,
E. Piatnitski, M. C. Tuma and J. Kincaid, US Patent WO 2005/004818
A2, 2005.
15 X. Ouyang, X. Chen, E. L. Piatnitskii, A. S. Kiselyov, H.-Y. He, Y. Mao,
V. Pattaropong, Y. Yu, K. H. Kim, J. Kincaid, L. Smith, II, W. C.
Wong, S. P. Lee, D. L. Milligan, A. Malikzay, J. Fleming, J. Gerlak,
D. Dhanvanthri, J. F. Doody, H.-H. Chiang, S. N. Patel, Y. Wang, R. L.
Rosler, P. Kussie, M. Labelle and M. C. Tuma, Bioorg. Med. Chem.
Lett., 2005, 15, 5154.
(c)
16 M. N. Semenova, A. S. Kiselyov and V. V. Semenov, Biotechniques,
2006, 40, 765.
17 M. N. Semenova, A. S. Kiselyov, I. Y. Titov, M. M. Raihstat, M. Molodtsov,
E. Grishchuk, I. Spiridonov and V. V. Semenov, Chem. Biol. Drug
Design, 2007, 70, 485.
18 V. G. Andrianov and A. V. Eremeev, Khim. Geterotsikl. Soedin., 1994,
470 [Chem. Heterocycl. Compd. (Engl. Transl.), 1994, 30, 370].
19 V. N. Yarovenko, M. M. Krayushkin, O. V. Lysenko, L. M. Kustov and
I. V. Zavarzin, Izv. Akad. Nauk, Ser. Khim., 1994, 444 (Russ. Chem.
Bull.,, 1994, 43, 402).
Figure 1 Effect of aminofurazans on the sea urchin embryo development.
(a), (c) Intact embryos: (a) 8-cell stage; (c) early blastula. (b), (d) Typical
cleavage abnormalities caused by aminofurazans. Fertilized eggs were
exposed continuously to (b) 4 μmol dm–3 of 8c or (d) 2 μmol dm–3 of 11g.
Time after fertilization: (a), (b) 3 h; (c), (d) 6 h. Average embryo diameter
is 115 mm.
20 V. G. Andrianov, V. G. Semenikhina, A. V. Eremeev and A. P. Gaukhman,
Khim. Geterotsikl. Soedin., 1988, 1701 [Chem. Heterocycl. Compd.
(Engl. Transl.), 1988, 24, 1410].
21 V. G. Andrianov and A. V. Eremeev, Khim. Geterotsikl. Soedin., 1990,
1443 [Chem. Heterocycl. Compd. (Engl. Transl.), 1990, 26, 1199].
22 V. G. Andrianov, V. G. Semenikhina and A. V. Eremeev, Khim. Geterotsikl.
Soedin., 1991, 122 [Chem. Heterocycl. Compd. (Engl. Transl.), 1991,
27, 102].
23 V. G. Andrianov, E. N. Rozhkov and A. V. Eremeev, Khim. Geterotsikl.
Soedin., 1994, 534 [Chem. Heterocycl. Compd. (Engl. Transl.), 1994,
30, 470].
24 T. Ichikawa, T. Kato and T. Takenishi, J. Heterocycl. Chem., 1965, 2, 253.
25 V. G. Andrianov, A. V. Eremeev and Yu. B. Sheremet, Khim. Geterotsikl.
Soedin., 1988, 856 [Chem. Heterocycl. Compd. (Engl. Transl.), 1988,
24, 770].
26 R. Beaudegnies and S. Wendeborn, Heterocycles, 2003, 60, 2417.
27 A. B. Sheremetev, V. G. Andrianov, E. V. Mantseva, E. V. Shatunova,
N. S. Aleksandrova, I. L. Yudin, D. E. Dmitriev, B. B. Averkiev and
M. Yu. Antipin, Izv. Akad. Nauk, Ser. Khim., 2004, 569 (Russ. Chem.
Bull., Int. Ed., 2004, 53, 596).
28 T. S. Novikova, T. M. Mel’nikova, O. V. Kharitonova, V. O. Kulagina,
N. S. Aleksandrova, A. B. Sheremetev, T. S. Pivina, L. I. Khmel’nitskii
and S. S. Novikov, Mendeleev Commun., 1994, 138.
29 A. B. Sheremetev, O. V. Kharitonova, E. V. Mantseva, V. O. Kulagina,
E. V. Shatunova, N. S. Aleksandrova, T. M. Mel’nikova, E. A. Ivanova,
D. E. Dmitriev, V. A. Eman, I. L. Yudin, V. S. Kuzmin, Yu. A. Strelenko,
T. S. Novikova, O. V. Lebedev and L. I. Khmelnitskii, Zh. Org. Khim.,
1999, 35, 1555 (Russ. J. Org. Chem., 1999, 35, 1525).
the molecules of 8b,c and 11d,g displayed EC50 values of about
1–4 μmol dm–3 suggesting an antimitotic tubulin destabilizing
effect (Figure 1).
In summary, a series of furazan derivatives based on struc-
tural overlap with combretastatin have been designed, syn-
thesized and tested in the phenotypic sea urchin embryo in vivo
assay. The targeted molecules were prepared via a synthetic
sequence involving the formation of key chloroamidoxime 2.
Compound 2 was converted to trichloromethyl 1,2,4-oxadiazoles
7, 9 and 10 via a two-step protocol, namely, the ring-to-ring
interconversion reaction of amidoximes 3 and 4 to yield com-
pounds 5 and 6 with their subsequent cyclization. A nucleophilic
displacement of the CCl3 group in 7, 9 and 10 with a series of
amines furnished targeted furazans 8a–r and 11a–h in high
yields. A furazan analogue of combretastatin 14 was prepared
from 3,4-dinitrofurazan 12 via stepwise nucleophilic displacement
of nitro groups with N- and O-nucleophiles. The order of reac-
tions for 12 was discovered to be critical to the outcome of this
conversion. All targeted furazan derivatives were conveniently
purified via a straightforward recrystallization to furnish analyti-
cally pure materials immediately suitable for biological assays.
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.mencom.2010.05.002.
Received: 1st December 2009; Com. 09/3428
– 134 –