3 (a) B. Mitrovic, L. J. Ignarro, H. V. Vinters, M. A. Akerms, I. Schmid
and C. Uittenbogaart, Neuroscience, 1995, 65, 531; (b) Y. Hou, J. Wang,
P. R. Andreana, G. Cantauria, S. Tarasia, L. Sharp,
P. G. Braunschweiger and P. G. Wang, Bioorg. Med. Chem. Lett.,
1999, 9, 2255.
4 Q. Jia, A. Janczuk, T. Cai, M. Xian, Z. Wen and P. G. Wang, Expert
Opin. Ther. Pat., 2002, 12, 819.
5 R. Pandey and G. Zheng, in The Porphyrin Handbook, ed. K. M. Smith,
K. Kadish and R. Guilard, Academic Press, San Diego, 2000, vol. 6,
pp. 157–230.
6 G. Jori, L. Schindl, A. Shindl and L. Polo, J. Photochem. Photobiol., A,
1996, 102, 101.
7 See, for example: S. Sortino, A. Mazzaglia, L. Monsu` Scolaro,
F. Marino Merlo, V. Valveri and M. T. Sciortino, Biomaterials, 2006,
27, 4256 and references therein.
8 (a) S. Sortino, S. Petralia, G. Compagnini, S. Conoci and G. Condorelli,
Angew. Chem., Int. Ed., 2002, 41, 1914; (b) E. B. Caruso, S. Petralia,
S. Conoci, S. Giuffrida and S. Sortino, J. Am. Chem. Soc., 2007, 129,
480; (c) S. Conoci, S. Petralia and S. Sortino, Eur. Pat. Appl. Pending.
9 (a) M. D. Everaars, A. T. M. Marcelis, A. J. Kuijupers, E. Laverdure,
J. Koronova, A. Koudijs and E. J. R. Sudho¨lter, Langmuir, 1995, 11,
3705; (b) Y. Shimomura, R. Ando and T. Kunitake, Ber. Bunsen-Ges.
Phys. Chem., 1983, 87, 1134.
10 We emphasize that the present work focuses on the simultaneous
photogeneration of NO and 1O2 (1Dg) from a molecular nanoassembly.
Detailed morphological investigations on the present nanoaggregate are
outside the scope of the present study and will be the object of a
forthcoming investigation.
quenching effect due to potential photoinduced energy and/or
electron transfer involving the two chromophores.
In summary, we report a photoactivable micellar nanoassembly
that, to our knowledge, represents the first molecular system able to
deliver simultaneously, in the same region of space, and under the
1
exclusive control of visible light, NO and O2 (1Dg), two species
playing a key role in the therapy of cancer. The considerable
fluorescence of the nanoaggregate, a useful tool for mapping its
localization in cells, and its reduced sizes, represent additional
advantages that make this photoactive vehicle an appealing
candidate to be tested in biological research. Studies concerning
this are currently in progress. Finally, we believe that the extension
of the present approach to a variety of ad-hoc chosen NO
photodonors and porphyrin derivatives may pave the way for the
development of novel classes of nanoscaled, photoactivable
systems in the emerging field of nanomedicine, for multimodal
therapy.
This work was supported by MIUR, Rome, Italy (PRIN 2006,
n. 2006031909).
Notes and references
1 P. G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai and
A. J. Janczuk, Chem. Rev., 2002, 102, 1091.
11 N. C. Maiti, S. Mazymdar and N. Periasamy, J. Phys. Chem. B, 1998,
102, 1528.
2 (a) L. J. Ignarro, Nitric Oxide Biology and Pathobiology, Academic
Press, San Diego, CA, 1st edn, 2000, p. 41; (b) E. Culotta and
D. E. Koshland, Science, 1992, 258, 1862; (c) F. Murad, Angew. Chem.,
Int. Ed., 1999, 38, 1857; (d) R. F. Furchgott, Angew. Chem., Int. Ed.,
1999, 38, 1870.
12 A. Mazzaglia, N. Angelini, R. Darcy, R. Donohue, D. Lombardo,
N. Micali, M. T. Sciortino, V. Villari and L. Monsu` Scolaro, Chem.–
Eur. J., 2003, 9, 5762.
13 F. Wilkinson, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data,
1993, 22, 113.
5030 | Chem. Commun., 2007, 5028–5030
This journal is ß The Royal Society of Chemistry 2007