4
Tetrahedron
esters and the styrene products failed to form the corresponding
References and notes
products (4q-4t). Unsubstituted 2-alkenylthiazoles could also be
prepared in moderate to good yields (4u and 4v).
1. M.L. Zheludkevich, K.A. Yasakau, S.K. Poznyak, M.G.S.
Ferreiraac, Corros. Sci. 47 (2005) 3368-3383.
2. M.A. Ciufolini, D. Lefranc, Nat. Prod. Rep. 27 (2010) 330-
342.
3. M. Paul, P. Sudkaow, A. Wessels, N.E. Schlörer, J.M.
Neudörfl, A. Berkessel, Angew. Chem. Int. Ed. 57 (2018)
8310-8315.
4. D. Hansjoerg, M. Arianna, R. Christopher, R. Christopher,
D. Jan, F. Dieter, Patent, WO2009068170 (2009).
5. M.V. Cardoso, L.R. Siqueira, E.B. Silva, Eur. J. Med. Chem.
86 (2014) 48-59.
6. P.A.T.M. Gomes, A.R. Oliveira, M.O. Barbosa, Eur. J. Med.
Chem.121 (2016) 387-398.
7. R.N. Sharma, F.P. Xavier, K.K. Vasu, A.K. Sood, S. Bose, J.
Enzyme Inhib. Med. Chem. 24 (2009) 890-897.
8. T.A. Farghaly, M.A. Abdallah, G.S. Masaret, Z.A.
Muhammada, Eur. J. Med. Chem. 97 (2015) 320-333.
9. D.J. Kempf, H.L. Sham, K.C. Marsh, J. Med. Chem. 41
(1998) 602-617.
Furthermore, to demonstrate the utility of the strategy on a
larger scale, a gram-scale reaction of 4,5-dimethylthiazole N-
oxide (1a) and phenyl vinyl ketone (2a) was carried out. The
desired product 3a was obtained in 79% isolated yield (Scheme
10. G.T. Zitouni, M.D. Altintop, A. Ozdemir, B. Sever, C.G.
Akalin, K. Kucukoglu, Eur. J. Med. Chem. 107 (2016) 288-
294.
11. H. Neelakantan, H.Y. Wang, V. Vance, J.D. Hommel, S.F.
McHardy, S.J. Watowich, J. Med. Chem. 60 (2017) 5015-
5028.
12. D.E. Stephens, L.B. Johant, J.E. Burch, H.D. Armana, O.V.
Larionov, Chem. Commun. 52 (2016) 9945-9948.
13. X.j. Peng, P.P. Huang, L.L. Jiang, J.Y Zhu, L.X. Liu,
Tetrahedron Lett. 57 (2016) 5223–5226.
14. S.S. Liu, D. Lentz, C.C. Tzschucke, J. Org. Chem. 79 (2014)
3249-3254.
15. L.C. Campeau, M.B. Laperle, J.P. Leclerc, E. Villemure, S.
Gorelsky, K. Fagnou, J. Am. Chem. Soc. 130 (2008) 3276-
3277.
16. L. Bering, A.P. Antonchick, Org. Lett. 17 (2015) 3134-3137.
17. W.K. Fife, E.F.B. Scriven, Heterocycles. 22 (1984) 2375-
2394.
2).
18. O.V. Larionov, D. Stephens, A. Mfuh, G. Chavez, Org. Lett.
16 (2014) 864-867.
19. H. Xia, Y. Liu, P. Zhao, S. Gou, J. Wang, Org. Lett. 18
(2016) 1796-1799.
20. G.E.M. Crisenza, E.M. Dauncey, J.F. Bower, Org. Biomol.
Chem. 14 (2016) 5820-5825.
21. R. Kumar, I. Kumar, R. Sharma, U. Sharma, Org. Biomol.
Chem. 14 (2016) 2613-2617.
Based on the literatures [19-22], a probable mechanism for
the synthesis of 3a is proposed (Scheme 3). It is assumed that a
1,3-dipolar cycloaddition to form the isoxazolidine intermediate
A was carried out firstly. The cleavage of the N-O bond assisted
by TsOH was then followed to provide the α-hydroxy carbonyl
product 3a.
22. R. Loska, K. Szachowicz, D. Szydlik, Org. Lett. 15 (2013)
5706-5709.
23. W. Liu, X. Yu, C. Kuang, Org. Lett. 16 (2014) 1798-1801.
In conclusion, we have demonstrated an efficient strategy for
the synthesis of thiazole-substituted α-hydroxy carbonyl
compounds under transition-metal-free conditions. Furthermore,
go through a one-pot, two-step dehydration process, the
corresponding thiazole C-2 alkenylation products can be obtained
in good yields.
Supplementary Material
Supplementary material that may be helpful in the review
process should be prepared and provided as a separate electronic
file. That file can then be transformed into PDF format and
submitted along with the manuscript and graphic files to the
appropriate editorial office.
Acknowledgments
Financial support for this study from the National Key
Research and Development Plan (Grant No. 2017YFD0200504)
and the National Natural Science Foundation of China (Grant No.
21572060) is gratefully acknowledged.