Page 5 of 7
Journal of the American Chemical Society
1.
For selected examples of stoichiometric
with nickel catalysis: Coupling of α-carboxyl sp3-
carbons with aryl halides. Science 2014, 345, 437-440;
(g) Ahneman, D. T.; Doyle, A. G., C–H functionalization
of amines with aryl halides by nickel-photoredox
catalysis. Chem. Sci. 2016, 7, 7002-7006.
1
2
3
4
5
6
7
8
reductive amination see: (a) Borch, R. F.; Bernstein, M.
D.; Durst, H. D., Cyanohydridoborate anion as a
selective reducing agent. J. Am. Chem. Soc. 1971, 93,
2897-2904; (b) Abdel-Magid, A. F.; Carson, K. G.;
Harris, B. D.; Maryanoff, C. A.; Shah, R. D., Reductive
Amination of Aldehydes and Ketones with Sodium
Triacetoxyborohydride. Studies on Direct and Indirect
Reductive Amination Procedures. J. Org. Chem. 1996,
61, 3849-3862; (c) Dangerfield, E. M.; Plunkett, C. H.;
Win-Mason, A. L.; Stocker, B. L.; Timmer, M. S. M.,
Protecting-Group-Free Synthesis of Amines: Synthesis
of Primary Amines from Aldehydes via Reductive
Amination. J. Org. Chem. 2010, 75, 5470-5477.
6.
For reviews on early transition metal catalyzed
HAA see: (a) Roesky, P. W., Catalytic
Hydroaminoalkylation. Angew. Chem. Int. Ed. 2009,
48, 4892-4894; (b) Chong, E.; Garcia, P.; Schafer, L.
L., Hydroaminoalkylation: Early-Transition-Metal-
Catalyzed α-Alkylation of Amines. Synthesis 2014, 46,
2884-2896; (c) Edwards, P. M.; Schafer, L. L., Early
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
transition
metal-catalyzed
C–H
alkylation:
hydroaminoalkylation for Csp3–Csp3 bond formation in
the synthesis of selectively substituted amines. Chem.
Commun. 2018, 54, 12543-12560; For reviews on late
transition metal catalyzed HAA see: (d) Holmes, M.;
Schwartz, L. A.; Krische, M. J., Intermolecular Metal-
Catalyzed Reductive Coupling of Dienes, Allenes, and
Enynes with Carbonyl Compounds and Imines. Chem.
Rev. 2018, 118, 6026-6052; (e) Gonnard, L.; Guérinot,
A.; Cossy, J., Transition metal-catalyzed α-alkylation of
amines by Csp3‒H bond activation. Tetrahedron 2019,
75, 145-163.
2.
For selected examples see: (a) Tomioka, K.;
Inoue, I.; Shindo, M.; Koga, K., Asymmetric
organolithium additions to imines. Tetrahedron Lett.
1990, 31, 6681-6684; (b) Dilauro, G.; Dell'Aera, M.;
Vitale, P.; Capriati, V.; Perna, F. M., Unprecedented
Nucleophilic Additions of Highly Polar Organometallic
Compounds to Imines and Nitriles Using Water as a
Non-Innocent Reaction Medium. Angew. Chem. Int.
Ed. 2017, 56, 10200-10203.
3.
Hahn, G.; Kunnas, P.; de Jonge, N.; Kempe,
R., General synthesis of primary amines via reductive
amination employing a reusable nickel catalyst. Nature
Catalysis 2019, 2, 71-77.
7.
Hou,
(a) Nako, A. E.; Oyamada, J.; Nishiura, M.;
Z., Scandium-catalysed intermolecular
hydroaminoalkylation of olefins with aliphatic tertiary
amines. Chem. Sci. 2016, 7, 6429-6434; (b) Liu, F.;
Luo, G.; Hou, Z.; Luo, Y., Mechanistic Insights into
Scandium-Catalyzed Hydroaminoalkylation of Olefins
with Amines: Origin of Regioselectivity and Charge-
Based Prediction Model. Organometallics 2017, 36,
1557-1565; (c) Dörfler, J.; Doye, S., Aminopyridinato
Titanium Catalysts for the Hydroaminoalkylation of
Alkenes and Styrenes. Angew. Chem. Int. Ed. 2013,
52, 1806-1809; (d) Dörfler, J.; Preuß, T.; Schischko, A.;
4.
(a) Tan, X.; Gao, S.; Zeng, W.; Xin, S.; Yin, Q.;
Zhang, X., Asymmetric Synthesis of Chiral Primary
Amines by Ruthenium-Catalyzed Direct Reductive
Amination of Alkyl Aryl Ketones with Ammonium Salts
and Molecular H2. J. Am. Chem. Soc. 2018, 140, 2024-
2027; (b) Senthamarai, T.; Murugesan, K.;
Schneidewind, J.; Kalevaru, N. V.; Baumann, W.;
Neumann, H.; Kamer, P. C. J.; Beller, M.; Jagadeesh,
R. V., Simple ruthenium-catalyzed reductive amination
enables the synthesis of a broad range of primary
amines. Nat. Commun. 2018, 9, 4123.
5.
Palladium-Catalyzed Csp3-H Arylation of N-Boc
Benzylalkylamines via Deprotonative Cross-
Coupling Process. Chem. Eur. J. 2015, 21, 11010-
11013; (b) Jain, P.; Verma, P.; Xia, G.; Yu, J.-Q.,
Schmidtmann,
M.;
Doye,
S.,
A
2,6-
Bis(phenylamino)pyridinato Titanium Catalyst for the
Highly Regioselective Hydroaminoalkylation of
Styrenes and 1,3-Butadienes. Angew. Chem. Int. Ed.
2014, 53, 7918-7922; (e) Lühning, L. H.; Rosien, M.;
Doye, S., Titanium-Catalyzed Hydroaminoalkylation of
Vinylsilanes and a One-Pot Procedure for the
Synthesis of 1,4-Benzoazasilines. Synlett 2017, 28,
2489-2494; (f) Eisenberger, P.; Ayinla, R. O.; Lauzon,
J. M. P.; Schafer, L. L., Tantalum–Amidate Complexes
for the Hydroaminoalkylation of Secondary Amines:
Enhanced Substrate Scope and Enantioselective
Chiral Amine Synthesis. Angew. Chem. Int. Ed. 2009,
48, 8361-8365; (g) Edwards, P. M.; Schafer, L. L., In
Situ Generation of a Regio- and Diastereoselective
Hydroaminoalkylation Catalyst Using Commercially
Available Starting Materials. Org. Lett. 2017, 19, 5720-
5723; (h) DiPucchio, R. C.; Roşca, S.-C.; Schafer, L.
L., Catalytic and Atom-Economic C−C Bond
(a) Hussain, N.; Kim, B.-S.; Walsh, P. J.,
a
Enantioselective
amine
α-functionalization
via
palladium-catalysed C–H arylation of thioamides. Nat.
Chem. 2016, 9, 140-144; (c) McNally, A.; Prier, C. K.;
MacMillan, D. W. C., Discovery of an α-Amino C–H
Arylation Reaction Using the Strategy of Accelerated
Serendipity. Science 2011, 334, 1114-1117; (d) Peng,
J.-B.; Wu, F.-P.; Xu, C.; Qi, X.; Ying, J.; Wu, X.-F.,
Direct synthesis of benzylic amines by palladium-
catalyzed carbonylative aminohomologation of aryl
halides. Commun. Chem. 2018, 1, 29; (e) Spangler, J.
E.; Kobayashi, Y.; Verma, P.; Wang, D.-H.; Yu, J.-Q.,
α-Arylation of Saturated Azacycles and N-
Methylamines via Palladium(II)-Catalyzed Csp3–H
Coupling. J. Am. Chem. Soc. 2015, 137, 11876-11879;
(f) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.;
Doyle, A. G.; MacMillan, D. W. C., Merging photoredox
Formation:
AlkylꢀTantalum
Ureates
for
Hydroaminoalkylation. Angew. Chem. 2018, 130,
3527-3530; (i) Hamzaoui, B.; Pelletier, J. D. A.; El Eter,
M.; Chen, Y.; Abou-Hamad, E.; Basset, J.-M., Isolation
ACS Paragon Plus Environment