C O M M U N I C A T I O N S
Table 2. Ir-Catalyzed Enantioselective Decarboxylative Allylic
Scheme 1
Amidation of Substituted Allylic Benzyl Imidodicarbonates
respectively; analytical data of which matched with those of the
corresponding known compounds (Scheme 1). Compound 10 was
N-alkylated by KH and allyl bromide to give diene 11, which upon
ring closing metathesis (RCM) by Grubbs second generation
catalyst10 transformed to 12.11 The intramolecular amidomercuration
reaction of 13 with Hg(TFA)2 in nitromethane afforded 14, which
was previously used as a synthetic precursor for the stereoselective
synthesis of (+)-isosolenopsin A.12
In conclusion, we have successfully developed the iridium(I)-
catalyzed highly regio- and enantioselective decarboxylative allylic
amidation reaction, which is quite general and proceeds under mild
reaction conditions. This, combined with the synthetic utility of
optically pure Cbz-protected allylic amines, should make the
developed decarboxylative allylic amidation of particular value in
organic synthesis.
a Reaction condition A: substrate (0.2 mmol), [Ir(COD)Cl]2 (2 mol %),
L3 (4 mol %), DBU (1 equiv), PS (1 equiv), THF (0.5 mL) at room
temperature. Reaction condition B: same as the condition A except
[Ir(COD)Cl]2 (4 mol %) and L3 (8 mol %) at 55 °C. b Isolated yield of b
and l. c Ratio of regioisomers determined by 1H NMR of the crude reaction
mixture. d Enantiomeric excess determined by chiral HPLC.
Acknowledgment. Financial support from National Institute of
Health (Grant GM 08194) and The Welch Foundation (Grant AX-
1534) is gratefully acknowledged. We are also thankful to Professor
A. Alexakis and Dr. K. Ditrich for the generous gift of ligand L3
sample and a chiral amine for the synthesis of ligand L3,
respectively.
completely liberated from the Ir-π-allylic complex and then attack
the complex anti to iridium.
Supporting Information Available: Experimental procedures,
spectroscopic data for new compounds, and their hard copies. This
References
(1) (a) Trost, B. M.; Crawley, M. L. Chem. ReV. 2003, 103, 2921. (b) Trost,
B. M. J. Org. Chem. 2004, 69, 5813.
(2) For the initial works: (a) Tsuda, T.; Chujo, Y.; Nishi, S.-I.; Tawara, K.;
Saegusa, T. J. Am. Chem. Soc. 1980, 102, 6381. (b) Shimizu, I.; Yamada,
T.; Tsuji, J. Tetrahedron Lett. 1980, 21, 3199. For recent reviews: (c)
Tunge, J. A.; Burger, E. C. Eur. J. Org. Chem. 2005, 1715. (d) Tsuji, J.
Proc. Jpn. Acad., Ser. B 2004, 80, 349. (e) You, S.-L.; Dai, L.-X. Angew.
Chem., Int. Ed. 2006, 45, 5246. For more recent articles: (f) Patil, N. T.;
Huo, Z.; Yamamoto, Y. J. Org. Chem. 2006, 71, 6991. (g) Waetzig,
S. R.; Rayabarapu, D. K.; Weaver, J. D.; Tunge, J. A. Angew. Chem., Int.
Ed. 2006, 45, 4977. (h) Burger, E. C.; Tunge, J. A. Chem. Commun. 2005,
2835. (i) Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B. M. Angew.
Chem., Int. Ed. 2005, 44, 6924.
(3) Mellegaard-Waetzig, S. R.; Rayabarapu, D. K.; Tunge, J. A. Synlett 2005,
2759.
(4) For a good review on Ir(I) chemistry: Takeuchi, R.; Kezuka, S. Synthesis
2006, 3349.
(5) (a) Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 15164. (b)
Leitner, A.; Shekhar. S.; Pouy, M. J.; Hartwig, J. F. J. Am. Chem. Soc.
2005, 127, 15506. (c) Leitner, A.; Shu, C.; Hartwig, J. F. Org. Lett. 2005,
7, 1093.
(6) (a) Tissot-Croset, K.; Polet, D.; Alexakis, A. Angew. Chem., Int. Ed. 2004,
43, 2426. (b) Polet, D.; Alexakis, A.; Tissot-Croset, K.; Corminboeuf,
C.; Ditrich, K. Chem.sEur. J. 2006, 12, 3596.
(7) (a) Welter, C.; Koch, O.; Lipowsky, G.; Helmchen, G. Chem. Commun.
2004, 896. (b) Welter, C.; Dahnz, A.; Brunner, B.; Streiff, S.; Duebon,
P.; Helmchen, G. Org. Lett. 2005, 7, 1239.
(8) Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc.
2003, 125, 14272.
(9) (a) Shu, C.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004, 43, 4794. (b)
Evans, P. A.; Leahy, D. K. J. Am. Chem. Soc. 2002, 124, 7882. (c) Kim,
H.; Lee, C. Org. Lett. 2002, 4, 4369. (d) Fagnou, K.; Lautens, M. Angew.
Chem., Int. Ed. 2002, 41, 26.
(10) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413.
(11) Hunt, J. C. A.; Laurent, P.; Moody, C. J. J. Chem. Soc., Perkin Trans. 1
2002, 2378.
To shed light on the nature of the actual nucleophile and/or timing
of decarboxylation (I vs II in eq 3), ethyl cinnamyl carbonate was
treated with benzyl carbamate anion (generated in situ from benzyl
carbamate and n-BuLi at 0 °C) under the reaction conditions. No
product was observed even in trace, and all starting materials were
recovered. Hence, it might be unlikely that the benzyl carbamate
anion acts as the actual nucleophile to the Ir-π-allylic complex
(II in eq 3). Rather, the carboxylate anion (after proton shift from
the nitrogen to the oxygen), which is generated from the oxidative
addition of the substrate to the Ir catalyst, attacks the Ir-π-allylic
complex (I in eq 3) and decarboxylation occurs later in the reaction
sequence. This is in sharp contrast to the decarboxylative allylic
carbon-carbon bond formation where decarboxylation takes place
prior to the attack of a nucleophile to the π-allyl complex.2c
To demonstrate the synthetic utility of Cbz-protected chiral allylic
amines generated and to establish absolute stereochemistry at the
allylic carbon, compounds 10 and 13 were converted to 12 and 14,
(12) Singh, O. V.; Han, H. Org. Lett. 2004, 6, 3067.
JA067966G
9
J. AM. CHEM. SOC. VOL. 129, NO. 4, 2007 775