Mazik and Cavga
FIGURE 1. Examples of neutral/charge-reinforced hydrogen bonds
and ion pairing in the crystal structures formed between Neu5Ac-
containing ligands and different proteins: (a, b) methyl R-sialoside/
rhesus rotavirus hemagglutinin;3a,5c (c, d) NeuAc(R2-3)Galâ4Glc/
polyoma virus;3c,5b (e) NeuAc/influenza neuraminidase complex.5f,g
In the case of receptors 6b and 7b, both the neutral and ionic
hydrogen bonds, as well as ion pairing, were expected to
stabilize the complexes with Neu5Ac, similar to sugar-binding
proteins. Furthermore, the participation of the central phenyl
ring of 6b and 7b in CH···π interactions with sugar CHs was
expected to provide additional stabilization of the receptor-
sugar complexes. The formation of the above-mentioned
interactions was also indicated by molecular modeling studies
(Figures 2-5); examples of binding motifs found by molecular
modeling are shown in Figures 3 and 5.
In the design of artificial receptors for anions, the guanidinium
and amidinium groups have proved to be very popular motifs;
both groups are strongly basic and remain protonated over a
wide pH range (pKa values typically range between 11 and 13).
Several excellent reviews exist in the literature covering the
use of artificial guanidinium- and amidinium-containing receptor
systems in supramolecular chemistry.6 In the area of sugar
recognition, these units have mostly been incorporated into
different boronic acid-based receptors.1d,7
role in a variety of biological processes,3a,4 including different
cellular recognition processes. N-Acetylneuraminic acid is
known to be overexpressed on the cell surface of tumor cells;
furthermore, sialic acids are frequently used as a recognition
unit in influenza viruses,3a including H5N1 influenza A viruses.4b
The biological recognition processes involving sialoglycocon-
jugates use both neutral and charge-reinforced hydrogen bonds,
as well as ion pairing for sugar binding; some examples of these
interactions are shown in Figure 1.
The analyses of the crystal structures of the complexes formed
between the Neu5Ac-containing ligands and sialic acid-binding
lectins showed that, with the exception of polyoma virus (see
Figure 1c), the carboxylate moiety of Neu5Ac interacts with
the main-chain amide groups, polar side chains (especially
serine, see Figure 1a), and ordered water molecules rather than
fully charged side chains.3a,b,5a-c In contrast, formation of ion
pairs with the Neu5Ac carboxylate (Figure 1e) appears to be a
common feature of neuraminidases.3b,5d-f In the complexes of
sialic acid-binding lectins, the glycerol side chain of Neu5Ac
is often involved in charge-reinforced hydrogen bonds with
positively charged amino acids, such as an arginine side chain,
as shown in Figure 1b. The acetamido moiety of Neu5Ac is
also frequently a significant recognition determinant (for
example, see Figure 1d).
(6) (a) Hartley, J. H.; James, T. D.; Ward, C. J. J. Chem. Soc., Perkin
Trans. 1 2000, 3155-3184. (b) Houk, R. J. T.; Tobey, S. L.; Anslyn, E. V.
Top. Curr. Chem. 2005, 255, 199-229. (c) Schmidtchen, F. P., Berger, M.
Chem. ReV. 1997, 97, 1609-1646. (d) Fitzmaurice, R. J.; Kyne, G. M.;
Douheret, D.; Kilburn, J. D. J. Chem. Soc., Perkin Trans. 1 2002, 841-
864. (e) Kubik, S.; Reyheller, C.; Stu¨we, S. J. Inclusion Phenom.
Macrocyclic Chem. 2005, 52, 137-187. (f) Yoon, J.; Kim, S. K.; Singh,
N. J.; Kim, K. S. Chem. Soc. ReV. 2006, 35, 355-360. (g) Best, M. D.;
Tobey, S. L.; Anslyn, E. V. Coord. Chem. ReV. 2003, 240, 3-15.
(7) (a) Wiskur, S. L.; Lavigne, J. J.; Metzger, A.; Tobey, S. L.; Lynch,
V.; Anslyn, E. V. Chem.sEur. J. 2004, 10, 3792-3804. (b) Segura, M.;
Alcazar, V.; Prados, P.; de Mendoza, J. Tetrahedron 1997, 53, 13119-
13128. (c) Yang, W.; Yan, J.; Fang, H.; Wang, B. Chem. Commun. 2003,
792-793. (d) For a receptor operating through noncovalent interactions,
see Schmuck, C.; Schwegmann, M. Org. Lett. 2006, 8, 1649-1652.
(8) (a) Otsuka, H.; Uchimura, E.; Koshino, H.; Okano, T.; Kataoka, K.
J. Am. Chem. Soc. 2003, 125, 3493-3502. (b) Djanashvili, K.; Frullano,
L.; Peters, J. A. Chem.sEur. J. 2005, 11, 4010-4018. (c) Yamamoto, M.;
Takeuchi, M.; Shinkai, S. Tetrahedron 1998, 54, 3125-3140. (d) He, M.;
Johnson, R. J.; Escobedo, J. O.; Beck, P. A.; Kim, K. K.; St. Luce, N. N.;
Davis, C. J.; Lewis, P. T.; Fronczek, F. R.; Melancon, B. J.; Mrse, A. A.;
Treleaven, W. D.; Strongin, R. M. J. Am. Chem. Soc. 2002, 124, 5000-
5009. (e) Zhang, T.; Anslyn, E. V. Org. Lett. 2006, 8, 1649-1652.
(4) (a) Schauer, R.; Schukla, A. K.; Schroder, C.; Muller, E. Pure. Appl.
Chem. 1984, 56, 907-921. (b) Shinya, K.; Ebina, M.; Yamada, S.; Ono,
M.; Kasai, N.; Kawaoka, Y. Nature 2006, 440, 435-436.
(5) (a) Watowich, S. J.; Skehel, J. J.; Wiley, D. C. Structure 1994, 2,
719-731. (b) Stehle, T.; Yan, Y.; Benjamin, T. L.; Harrison, S. C. Nature
1994, 369, 160-163. (c) Dormitzer, P. R.; Sun, Z. Y.; Wagner, G.; Harrison,
S. C. EMBO J. 2002, 21, 885-897. (d) Varshese, J. N.; Laver, W. G.;
Colman, P. M. Nature 1983, 303, 35-44. (e) Crennell, S.; Garman, E.;
Laver, G.; Vimr, E.; Taylor, G. Structure 1994, 2, 535-544. (f) Varghese,
J. N.; McKimm-Breschkin, J.; Caldwell, J. B.; Kortt, A. A.; Colman, P. M.
Proteins: Struct., Funct., Genet. 1992, 14, 327-332. (g) Sears, P.; Wong,
C.-H. Angew. Chem., Int. Ed. 1999, 38, 2300-2324.
832 J. Org. Chem., Vol. 72, No. 3, 2007