R. Sanz, Y. Fernández, M. P. Castroviejo, A. Pérez, F. J. Fañanás
FULL PAPER
5341; c) Z. Liu, R. C. Larock, J. Am. Chem. Soc. 2005, 127,
13112–13113; d) C. Dockendorff, S. Sahli, M. Olsen, L. Mil-
hau, M. Lautens, J. Am. Chem. Soc. 2005, 127, 15028–15029;
e) T. T. Jayanth, C.-H. Cheng, Chem. Commun. 2006, 894–896;
f) Z. Liu, R. C. Larock, J. Org. Chem. 2006, 71, 3198–3209; g)
D. Peña, D. Pérez, E. Guitián, Angew. Chem. Int. Ed. 2006, 45,
3579–3581.
Introduced independently by Huisgen and Bunnett: a) R. Hu-
isgen, J. Sauer, Angew. Chem. 1960, 72, 91–108; b) J. F. Bunnett,
B. F. Hrutfiord, J. Am. Chem. Soc. 1961, 83, 1691–1697.
For a review, see: E. R. Biehl in Advances in Nitrogen Heterocy-
cles (Ed.: C. J. Moody), JAI Press, Inc., 2000, vol. 4, pp. 251–
293.
R. D. Clark, J. M. Caroon, J. Org. Chem. 1982, 47, 2804–2806.
a) P. Stanetty, B. Krumpak, J. Org. Chem. 1996, 61, 5130–5133;
b) R. A. Fairhurst, D. Janus, A. Lawrence, Org. Lett. 2005, 7,
4697–4700.
T. M. Sielecki, A. I. Meyers, J. Org. Chem. 1992, 57, 3673–
3676.
Kumar, F. Sóti, J. Chem. Res. (S) 1989, 350–351; c) M. A.
Weidner-Wells, J. Altom, J. Fernandez, S. A. Fraga-Spano, J.
Hilliard, K. Ohemeng, J. F. Barrett, Bioorg. Med. Chem. Lett.
1998, 8, 97–100.
a) R. Adams, D. C. Pease, J. H. Clark, B. R. Baker, J. Am.
Chem. Soc. 1940, 62, 2197–2200; b) J. Novak, C. A. Salemink,
J. Chem. Soc., Perkin Trans. 1 1983, 2867–2871; c) L. Zhi,
C. M. Tegley, K. B. Marschke, D. E. Mais, T. K. Jones, J. Med.
Chem. 1999, 42, 1466–1472.
a) J. P. Devlin, Can. J. Chem. 1975, 53, 343–349; b) P. Müller,
T. Venakis, C. H. Eugster, Helv. Chim. Acta 1979, 62, 2833–
2840; c) C. Abell, B. D. Bush, J. Staunton, J. Chem. Soc., Chem.
Commun. 1986, 15–17; d) G. J. Bodwell, Z. Pi, I. R. Pottie, Syn-
lett 1999, 477–479; e) I. Suzuki, M. Wakayama, A. Shigenaga,
H. Nemoto, M. Shibuya, Tetrahedron Lett. 2000, 41, 10019–
10023; f) T. Kawasaki, Y. Yamamoto, J. Org. Chem. 2002, 67,
5138–5141; g) Q. J. Zhou, K. Worm, R. E. Dolle, J. Org. Chem.
2004, 69, 5147–5149; h) G. J. Kemperman, B. Ter Horst, D.
Van de Goor, T. Roeters, J. Bergwerff, R. Van der Eem, J.
Basten, Eur. J. Org. Chem. 2006, 3169–3174.
a) D. E. Ames, A. Opalko, Tetrahedron 1984, 40, 1919–1925;
b) T. Harayama, H. Yasuda, T. Akiyama, Y. Takeuchi, H. Abe,
Chem. Pharm. Bull. 2000, 48, 861–864; c) R. Grigg, V. Savic,
V. Tambyrajah, Tetrahedron Lett. 2000, 41, 3003–3006.
W. R. H. Hurtley, J. Chem. Soc. 1929, 1870–1873. For a review,
see: K. A. Cirigottis, E. Ritchie, W. C. Taylor, Aust. J. Chem.
1974, 27, 2209–2228.
[21]
[3]
[4]
[22]
[5]
[6]
[7]
[8]
[9]
C. Hoarau, A. Couture, E. Deniau, P. Grandclaudon, Synthesis
2000, 655–660 and references cited therein.
D. W. Knight, P. B. Little, J. Chem. Soc., Perkin Trans. 1 2000,
2343–2355.
[23]
[24]
[10]
[11]
M. Iwao, J. Org. Chem. 1990, 55, 3622–3627.
a) W. F. Bailey, S. C. Longstaff, J. Org. Chem. 1998, 63, 432–
433; b) W. F. Bailey, S. C. Longstaff, Tetrahedron Lett. 1999,
40, 6899–6901.
a) J. Barluenga, F. J. Fañanás, R. Sanz, Y. Fernández, Tetrahe-
dron Lett. 1999, 40, 1049–1052; b) J. Barluenga, F. J. Fañanás,
R. Sanz, Y. Fernández, Chem. Eur. J. 2002, 8, 2034–2046; c)
R. Sanz, Y. Fernández, M. P. Castroviejo, A. Pérez, F. J.
Fañanás, J. Org. Chem. 2006, 71, 6291–6294.
For reviews about isolation, structure elucidation, biological
significance, and synthetic approaches to the Amaryllidaceae
alkaloids, see: a) S. F. Martin in The Alkaloids (Ed.: A. Brossi),
Academic Press, New York, 1987, vol. 30, pp. 251–376; b) O.
Hoshino in The Alkaloids (Ed.: A. Brossi), Academic Press,
New York, 1998, vol. 51, pp. 323–425.
[25]
[26]
D. J. Hart, A. Kim, R. Krishnamurthy, G. H. Merriman, A.-
M. Waltos, Tetrahedron 1992, 48, 8179–8188.
[12]
[13]
a) S. A. Glover, S. L. Golding, A. Goosen, C. W. McCleland,
J. Chem. Soc., Perkin Trans. 1 1981, 842–848; b) W. R. Bow-
man, E. Mann, J. Parr, J. Chem. Soc., Perkin Trans. 1 2000,
2991–2999; c) D. C. Harrowven, M. I. T. Nunn, N. A. New-
man, D. R. Fenwick, Tetrahedron Lett. 2001, 42, 961–964.
T. Taniguchi, K. Ogasawara, Tetrahedron Lett. 1998, 39, 4679–
4682.
a) From 1-carboxyphenanthridone, see: G. S. Chandler, J. L.
Huppatz, R. A. Jones, W. H. F. Sasse, Aust. J. Chem. 1967, 20,
2037–2046; b) From phenanthridine, see: J. P. Casey, A. C.
Casey, F. D. Popp, Org. Prep. Proced. Int. 1971, 3, 125–126.
A one-pot synthesis of 6-substituted phenanthridines from
fluoroarenes and nitriles via benzynes has been reported: J.
Pawlas, M. Begtrup, Org. Lett. 2002, 4, 2687–2690.
[27]
[28]
[14]
[15]
[16]
F. Viladomat, M. Selles, C. Codina, J. Bastida, Planta Med.
1997, 63, 583.
R. Suau, A. I. Gómez, R. Rico, Phytochemistry 1990, 29, 1710–
1712.
[29]
[30]
a) M. A. Siddiqui, V. Snieckus, Tetrahedron Lett. 1988, 29,
5463–5466; b) M. G. Banwell, B. D. Bisset, S. Busato, C. J.
Cowden, D. C. R. Hockless, J. W. Holman, R. W. Read, A. W.
Wu, J. Chem. Soc., Chem. Commun. 1995, 2551–2553; c) D. Li,
B. Zhao, E. J. LaVoie, J. Org. Chem. 2000, 65, 2802–2805; d)
T. Harayama, H. Akamatsu, K. Okamura, T. Miyagoe, T. Aki-
yama, H. Abe, Y. Takeuchi, J. Chem. Soc., Perkin Trans. 1
2001, 523–528; e) M. G. Banwell, D. W. Lupton, X. Ma, J. Ren-
ner, M. O. Sydnes, Org. Lett. 2004, 6, 2741–2744; f) T. Haray-
ama, Y. Kawata, C. Nagura, T. Sato, T. Miyagoe, H. Abe, Y.
Takeuchi, Tetrahedron Lett. 2005, 46, 6091–6094.
a) J. Grimshaw, R. Hamilton, J. Trocha-Grimshaw, J. Chem.
Soc., Perkin Trans. 1 1982, 229–234; b) W. R. Bowman, H.
Heaney, B. M. Jordan, Tetrahedron 1991, 47, 10119–10128; c)
A. M. Rosa, A. M. Lobo, P. S. Branco, S. Prabhakar,
A. M. D. L. Pereira, Tetrahedron 1997, 53, 269–284; d) A. M.
Rosa, A. M. Lobo, P. S. Branco, S. Prabhakar, M. Sá-da-Costa,
Tetrahedron 1997, 53, 299–306.
a) S. V. Kessar, D. Pal, M. Singh, Tetrahedron 1973, 29, 177–
184; b) S. V. Kessar, Y. P. Gupta, P. Balakrishnan, K. K. Sawal,
T. Mohammad, M. Dutt, J. Org. Chem. 1988, 53, 1708–1713.
a) S. Prabhakar, A. M. Lobo, M. R. Tavares, J. Chem. Soc.,
Chem. Commun. 1978, 884–885; b) N. S. Narasimhan, P. S.
Chandrachood, N. R. Shete, Tetrahedron 1981, 37, 825–827; c)
T. Kumemura, T. Chosbi, J. Yukawa, A. Hirose, J. Nobuhiro,
S. Hibino, Heterocycles 2005, 66, 87–90.
Prepared from piperonyl alcohol by treatment with Br2
1
(1.5 equiv.) in CHCl3. H NMR (400 MHz, CDCl3): δ = 7.00
(s, 1 H), 6.89 (s, 1 H), 5.98 (s, 2 H), 4.54 (s, 2 H) ppm. 13C
NMR (100.6 MHz, CDCl3): δ = 148.7, 147.6, 129.9, 115.6,
113.1, 110.5, 102.1, 34.1 ppm. LRMS (70eV, EI): m/z (%) =
296 (3) [M + 4]+, 294 (7) [M + 2]+, 292 (3) [M]+, 215 (100),
213 (100).
[31]
[32]
[33]
[34]
See Experimental Section for the synthesis of tertiary amines
6.
See Supporting Information for comparison of NMR spectro-
scopic data.
[17]
F. Viladomat, J. Bastida, G. Tribo, C. Codina, M. Rubiralta,
Phytochemistry 1990, 29, 1307–1310.
a) C. J. Cowden, M. G. Banwell, I. C. S. Ho, J. Nat. Prod. 1994,
57, 1746–1750; b) M. G. Banwell, C. J. Cowden, Aust. J. Chem.
1994, 47, 2235–2254.
For the synthesis of biologically active benzo[c]phenanthridine
alkaloids, see: a) T. Nakanishi, M. Suzuki, A. Mashiba, K.
Ishikawa, T. Yokotsuka, J. Org. Chem. 1998, 63, 4235–4239; b)
T. Harayama, K. Shibaike, Heterocycles 1998, 49, 191–195; c)
T. Nakanishi, M. Suzuki, Org. Lett. 1999, 1, 985–988; d) T.
Harayama, T. Akiyama, H. Akamatsu, K. Kawano, H. Abe, Y.
Takeuchi, Synthesis 2001, 444–450; e) T. N. Le, S. G. Gang, W.-
J. Cho, J. Org. Chem. 2004, 69, 2768–2772.
[35]
[18]
[19]
[36]
Synthesis of benzo[k]phenanthridines: a) By photocyclization
of 4-phenyl-3-vinylquinolines, see: K. Veeramani, P. Shanmu-
gam, Indian J. Chem. 1987, 26B, 116–121; b) By cyclization of
[20]
68
a) D. A. Young, D. Ferreira, D. G. Roux, J. Chem. Soc., Perkin
Trans. 1 1983, 2031–2035; b) S. Ghosal, J. Lal, S. K. Singh, Y.
www.eurjoc.org
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2007, 62–69