1112
M. Sugimoto et al. / Tetrahedron Letters 48 (2007) 1109–1112
Topics in Heterocyclic Chemistry; Kiyota, H., Ed.;
Springer: Berlin, 2006; Vol. 5, pp 97–148; Total synthesis
of (+)-laurencin: (b) Fujiwara, K.; Yoshimoto, S.; Taki-
zawa, A.; Souma, S.; Mishima, H.; Murai, A.; Kawai, H.;
Suzuki, T. Tetrahedron Lett. 2005, 46, 6819–6822; (c)
Baek, S.; Jo, H.; Kim, H.; Kim, H.; Kim, S.; Kim, D. Org.
Lett. 2005, 7, 75–77; (d) Crimmins, M. T.; Choy, A. L. J.
resulting two hydroxy groups were simultaneously bro-
minated via the SN2 process under Murai’s conditions13
to afford dibromide 20 in high yield.
With 20 in hand, the stage was set for the installation of
the Z-enyne moiety. The pivaloyl group in 20 was reduc-
tively deprotected (96%), and the resulting alcohol was
converted by the following sequence similar to that
reported by the Murai group:14 (i) oxidation with Dess–
Martin periodinane (93%), (ii) treatment with CBr4 and
HMPT in THF (93%),15 (iii) stereoselective hydrogenol-
ysis of 1,1-dibromoalkene by Uenishi’s method (82%),16
(iv) Sonogashira coupling of the resulting Z-1-bromo-
alkene with (t-butyldimethylsilyl)acetylene (90%).17 Finally,
deprotection of the TBS group in 21 led to the comple-
tion of (+)-(Z)-laureatin (3). The optical rotation of syn-
thetic (+)-(Z)-3 ½½aꢁ2D0 +103 (c 0.35, CCl4)] coincided with
that of the natural product [[a]D +96 (c 2.00, CCl4)].8
The comparison of the spectral data of synthetic (+)-
(Z)-3 (1H, 13C NMR,18 and IR) with those of the natural
product revealed that they were identical.
Am. Chem. Soc. 1999, 121, 5653–5660; (e) Kruger, J.;
¨
Hoffmann, R. W. J. Am. Chem. Soc. 1997, 119, 7499–
7504; (f) Burton, J. W.; Clark, J. S.; Derrer, S.; Stork, T.
C.; Bendall, J. G.; Holmes, A. B. J. Am. Chem. Soc. 1997,
119, 7483–7498; (g) Bratz, M.; Bullock, W. H.; Overman,
L. E.; Takemoto, T. J. Am. Chem. Soc. 1995, 117, 5958–
5966; (h) Tsushima, K.; Murai, A. Tetrahedron Lett. 1992,
33, 4345–4348.
4. (a) Saitou, T.; Suzuki, T.; Sugimoto, M.; Hagiwara, H.;
Hoshi, T. Tetrahedron Lett. 2003, 44, 3175–3178; (b)
Fujiwara, K.; Souma, S.; Mishima, H.; Murai, A. Synlett
2002, 1493–1495; (c) Crimmins, M. T.; Tabet, E. A. J. Am.
Chem. Soc. 2000, 122, 5473–5476; (d) Edward, S. D.;
Lewis, T.; Taylor, R. J. K. Tetrahedron Lett. 1999, 40,
4267–4270.
5. For the selective synthesis of a,a0-trans-8-membered cyclic
ethers, see: (a) Saitou, T.; Suzuki, T.; Onodera, N.;
Sekiguchi, H.; Hagiwara, H.; Hoshi, T. Tetrahedron Lett.
2003, 44, 2709–2712; (b) Mujica, M. T.; Afonso, M. M.;
Galindo, A.; Palenzuela, J. A. J. Org. Chem. 1998, 63,
9728–9738; (c) Kotsuki, H.; Ushio, Y.; Kadota, I.; Ochi,
M. J. Org. Chem. 1989, 54, 5153–5161.
6. Fukuzawa, A.; Takasugi, Y.; Murai, A. Tetrahedron Lett.
1991, 32, 5597–5598.
7. Fukuzawa, A.; Kurosawa, E. Tetrahedron Lett. 1979,
2797–2800.
In conclusion, the first total synthesis of (+)-(Z)-laurea-
tin (3) was accomplished with high stereoselectivity.
Although the bromo-cationic cyclization of the oxocene
derivative 7 according to the biogenetic pathway for the
stereoselective construction of the bicyclic skeleton gave
unsuccessful result, the purpose was indigenously
achieved via a sequence of stereoselective epoxidation
of 14 followed by regioselective 4-exo cyclization.
8. (a) Irie, T.; Izawa, M.; Kurosawa, E. Tetrahedron 1970,
26, 851–870; (b) Izawa, M.; Kurosawa, E. Tetrahedron
Lett. 1968, 2735–2738; (c) Irie, T.; Izawa, M.; Kurosawa,
E. Tetrahedron Lett. 1968, 2091–2096.
Acknowledgments
9. Suzuki, M.; Kurosawa, E. Bull. Chem. Soc. Jpn. 1987, 60,
3791–3792.
10. Murai, A.; Ono, M.; Masamune, T. Bull. Chem. Soc. Jpn.
1977, 50, 1226–1231.
We thank Professor J. Ishihara (University of Nagasaki)
and Professor T. Suzuki (Hokkaido University of Edu-
1
cation) for providing us H and 13C NMR spectra of
natural (+)-(Z)-3, respectively. This work was partially
supported by Grant-in-Aid for Scientific Research on
Priority Area (18032031 for H.H.) from The Ministry
of Education, Culture, Sports, Science and Technology
(MEXT).
11. Chlorination with retention of configuration using SO2Cl2
was reported. See: Kozikowski, A. P.; Lee, J. Tetrahedron
Lett. 1988, 29, 3053–3056.
12. Torisawa, Y.; Okabe, H.; Ikegami, S. Chem. Lett. 1984,
1555–1556.
13. Tsushima, K.; Murai, A. Tetrahedron Lett. 1992, 33,
4345–4348.
References and notes
14. Fujiwara, K.; Akakura, D.; Tsunashima, M.; Nakamura,
A.; Honma, T.; Murai, A. J. Org. Chem. 1999, 64, 2616–
2617.
15. Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769–
3772.
16. Uenishi, J.; Kawahama, R.; Yonemitsu, O. J. Org. Chem.
1996, 61, 5716–5717.
17. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron
Lett. 1975, 4465–4470.
1. For reviews, see: (a) Moore, R. E. In Marine Natural
Products; Scheuer, P. J., Ed.; Academic Press: New York,
1978; Vol. 1, pp 43–121; (b) Erickson, K. L. In Marine
Natural Products; Scheuer, P. J., Ed.; Academic Press:
New York, 1983; Vol. 5, pp 131–257; (c) Faulkner, D. J.
Nat. Prod. Rep. 2001, 18, 1–49, see also his previous
reviews in Nat. Prod. Rep.
18. In the 13C NMR spectrum, the C6 signal of the natural
product was reported to appear at 75.7 ppm (see Ref. 9),
whereas the corresponding signal was observed at
77.6 ppm in that provided by Professor Suzuki as the
natural product data. Including this signal, the 13C
spectral data of synthetic sample was identical with that
provided by Professor Suzuki.
2. (a) Ishihara, J.; Shimada, Y.; Kanoh, N.; Takasugi, Y.;
Fukuzawa, A.; Murai, A. Tetrahedron 1997, 53, 8371–
8382; (b) Ishihara, J.; Kanoh, N.; Murai, A. Tetrahedron
Lett. 1995, 36, 737–740; (c) Fukuzawa, A.; Takasugi, Y.;
Murai, A. Tetrahedron Lett. 1991, 32, 5597–5598.
3. For a review on the total synthesis of medium-sized cyclic
ethers from Lurencia red algae, see: (a) Fujiwara, K. In