B. V. Subba Reddy et al. / Tetrahedron Letters 51 (2010) 4827–4829
4829
L. R. Tetrahedron Lett. 1989, 30, 581; (c) Barton, D. H. R.; Magnus, P. D.; Young, R.
N. J. Chem. Soc., Chem. Commun. 1973, 331; (d) Barton, D. H. R.; Magnus, P. D.;
Garbarino, J. A.; Young, R. N. J. Chem. Soc., Perkin Trans. 1 1974, 2101; (e) Reddy,
K. L. Tetrahedron Lett. 2003, 44, 1453.
CH
3
..
N
R
H
CH
3
N
R
3. Kacan, M.; McKillop, A. Synth. Commun. 1993, 23, 2185.
4. Firouzabadi, H.; Sardarian, A. R.; Badparva, H. Synth. Commun. 1994, 24, 601.
5. (a) Kumar, H. M. S.; Reddy, B. V. S.; Anjaneyulu, S.; Reddy, E. J.; Yadav, J. S. New J.
Chem. 1999, 23, 955; (b) Sanz, R.; Martínez, A.; Guilarte, V.; Álvarez-Gutiérrez, J.
M.; Rodríguez, F. Eur. J. Org. Chem. 2007, 4642; (c) Yadav, J. S.; Reddy, B. V. S.;
Pandurangam, T.; Reddy, Y. J.; Gupta, M. K. Catal. Commun. 2008, 9, 1297; (d)
Wang, G. W.; Shen, Y. B.; Wu, X. L. Eur. J. Org. Chem. 2008, 4367.
6. (a) Trost, B. M.; Fleming, I.; Martin, F. In Comprehensive Organic Synthesis;
Pergamon press: Oxford, 1991; Vol. 4, p 292; (b) Clarke, T.; Devine, J.; Dicker, D.
W. J. Am. Oil. Chem. Soc. 1964, 41, 78.
..
H O
2
CH
O
CH
CH OH
3
3
3
N
H
R
N
N
R
R
-H
7. Cazorla, C.; Métay, E.; Andrioletti, B.; Lemaire, M. Tetrahedron Lett. 2009, 50,
6855.
Scheme 3. A plausible reaction mechanism.
8. (a) Rawal, G. K.; Kumar, A.; Tawar, U.; Vankar, Y. D. Org. Lett. 2007, 9, 5171; (b)
Yeung, Y. Y.; Gao, X.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 9644; (c) Yadav, J.
S.; Reddy, B. V. S.; Chary, D. N.; Chandrakanth, D. Tetrahedron Lett. 2009, 50,
1136; (d) Shaterian, H. R.; Yarahmadi, H.; Ghashang, M. Bioorg. Med. Chem. Lett.
2008, 18, 788; (e) Bahulayan, D.; Das, S. K.; Iqbal, J. J. Org. Chem. 2003, 68, 5735;
(f) Yadav, J. S.; Reddy, B. V. S.; Aravind, S.; Kumar, G. G. K. S. N.; Madhavi, C.;
Kunwar, A. C. Tetrahedron 2008, 64, 3025; (g) Yadav, J. S.; Reddy, B. V. S.; Kumar,
G. G. K. S. N.; Reddy, G. M. Tetrahedron Lett. 2007, 48, 4903.
present reaction conditions. The scope and generality of this pro-
cess is illustrated with respect to various alkenes and nitriles and
the results are presented in Table 1.10
Mechanistically, we assume that the reaction likely proceeds via
the protonation of alkene by HBF4ÁOEt2. The resulting carbocation
might be trapped by nitrile to give the nitrilium cation which sub-
sequently reacts with water to furnish the desired amide as shown
in Scheme 3.
In summary, we have developed a simple, convenient, and effi-
cient method for the preparation of secondary amides by means of
amidation of olefins with nitriles using HBF4ÁOEt2. This method of-
fers significant advantages including mild conditions, simplicity of
the reagent, and no formation of by-products. This method pro-
vides an easy access to a wide variety of secondary amides.
9. (a) Yadav, J. S.; Reddy, B. V. S.; Anusha, B.; Reddy, U. V. S.; Reddy, V. V. B.
Tetrahedron Lett. 2010, 51, 2872; (b) Yadav, J. S.; Reddy, B. V. S.; Ramesh, K.;
Kumar, G. G. K. S. N.; Grée, R. Tetrahedron Lett. 2010, 51, 1578.
10. Typical procedure: a mixture of styrene (1 mmol), acetonitrile (1 mmol), and
HBF4ÁOEt2 complex (1 mmol) was stirred at 23 °C for the specified amount of
time (Table 1). After completion of the reaction as indicated by TLC, the
reaction mixture was quenched with saturated NaHCO3 solution and extracted
with ethyl acetate (2 Â 10 mL). The combined organic layers were dried over
anhydrous Na2SO4. Removal of the solvent followed by the purification on
silica gel (Merck, 100–200 mesh, ethyl acetate–hexane, 0.5–9.5) gave the pure
N-(1-phenylethyl)acetamide. The products thus obtained were characterized
by IR, NMR, and mass spectroscopy. Spectral data for selected compounds:
compound 3a: N-(1-phenylethyl)acetamide: pale yellow solid, mp 63–65 °C; 1
H
NMR (300 MHz, CDCl3): d 7.29 (m, 5H), 5.84 (br s, 1H), 5.07 (m, 1H), 1.94
Acknowledgment
(s, 3H), 1.49 (d, J = 6.7 Hz, 3H); 13C NMR (75 MHz, CDCl3): d 169.2, 143.2, 128.4,
127.1, 126.1, 48.6, 23.1, 21.6; IR (KBr):
m 3265, 1644, 1552, 1447, 1374,
700 cmÀ1; EIMS: m/z: 163 [M]+. Compound 3b: N-(1-(4-chlorophenyl)ethyl)-
acetamide: white solid, mp 89–91 °C; 1H NMR (300 MHz, CDCl3): d 7.15–7.36
(m, 4H), 5.57 (br s, 1H), 5.0–5.16 (m, 1H), 1.96 (s, 3H), 1.47 (d, J = 6.7 Hz, 3H);
13C NMR (75 MHz, CDCl3): d 169.1, 141.7, 132.8, 128.6, 127.4, 48.1, 23.2, 21.6;
N.S.R. and Ch.M. thank Director, IICT, for the financial
assistance.
IR (KBr):
m
3293, 1648, 1551, 1369, 828, 738 cmÀ1; EIMS: m/z: 197 [M]+.
References and notes
Compound 3h: (2-phenyl-N-(1-phenylethyl)acetamide: white solid, mp 93–
95 °C; 1H NMR (300 MHz, CDCl3): d 7.10–7.36 (m, 5H), 5.51 (br s, 1H), 5.02–
5.13 (m, 1H), 3.53 (s, 2H), 1.39 (d, J = 7.5 Hz, 3H); 13C NMR (75 MHz, CDCl3): d
1. (a) Ritter, J. J.; Minier, P. P. J. Am. Chem. Soc. 1948, 70, 4045; (b) Krimen, L. I.;
Cota, D. J. Org. React. (NY) 1969, 17, 213.
2. (a) Top, S.; Jaouen, G. J. Org. Chem. 1981, 46, 78; (b) Garcia Martinez, A.;
Martinez Alvarez, R.; Teso Vilar, E.; Garcia Fraile, A.; Hanack, M.; Subramanian,
169.9, 142.9, 129.2, 128.8, 128.4, 127.1, 125.8, 48.6, 43.7, 21.7; IR (KBr): m 3313,
1647, 1532, 1245, 698; EIMS: m/z: 240 [M+H]+.