S. V. Ryabukhin et al. / Tetrahedron Letters 51 (2010) 4229–4232
4231
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Zhu, J.; Bienaymé, H. Multicomponent Reactions; Wiley-VCH: Weinheim,
Germany, 2005; (b) Armstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.;
Keating, T. Acc. Chem. Res. 1996, 29, 123–131; (c) Tietze, L. F.; Lieb, M. E. Curr.
Opin. Chem. Biol. 1998, 2, 363–371; (d) Domling, A. Comb. Chem. High
Throughput Screening 1998, 1, 1–22; (e) Dax, S. L.; McNally, J. J.; Youngman,
M. A. Curr. Med. Chem. 1999, 6, 255–270; (f) Tietze, L. F.; Modi, A. Med. Res. Rev.
2000, 20, 304–322; (g) Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem.
Eur. J. 2000, 6, 3321–3329; (h) Ugi, I.; Heck, S. Comb. Chem. High Throughput
Screening 2001, 4, 1–34; (i) Weber, L. Drug Discovery Today 2002, 7, 143–147; (j)
Domling, A. Curr. Opin. Chem. Biol. 2002, 6, 306–313.
2. Patrick, G. L. An Introduction to Medicinal Chemistry; Oxford University Press:
New York, 2005.
3. Bannwarth, W.; Hinzen, B. Combinatorial Chemistry: From Theory to Application;
Wiley-VCH: Weinheim, Germany, 2006.
4. Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043–1052.
5. Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360–416.
6. (a) Kappe, C. O.; Stadler, A. Org. React. 2004, 63, 1–117; (b) Hu, E. H.; Sidler, D.
R.; Dolling, U.-H. J. Org. Chem. 1998, 63, 3454–3457; (c) Lu, J.; Bai, Y.; Wang, Z.;
Yang, B.; Ma, H. Tetrahedron Lett. 2000, 41, 9075–9078; (d) Ma, Y.; Qian, C.;
Wang, L.; Yang, M. J. Org. Chem. 2000, 65, 3864–3868; (e) Ranu, B. C.; Hajra, A.;
Jana, U. J. Org. Chem. 2000, 65, 6270–6272; (f) Fu, N. Y.; Yuan, Y. F.; Cao, Z.;
Wang, S. W.; Wang, J. T.; Peppe, C. Tetrahedron 2002, 58, 4801–4807; (g) Reddy,
C. V.; Mahesh, M.; Raju, P. V. K.; Babu, T. R.; Reddy, V. V. N. Tetrahedron Lett.
2002, 43, 2657–2659; (h) Ramalinga, K.; Vijayalakshmi, P.; Kaimal, T. N. B.
Synlett 2001, 863–865; (i) Varala, R.; Alam, M. M.; Adapa, S. R. Synlett 2003, 67–
70; (j) Gourhari, M.; Pradip, K.; Chandrani, G. Tetrahedron Lett. 2003, 44, 2757–
2758; (k) Yadav, J. S.; Reddy, B. V. S.; Srinivas, R.; Venugopal, C.; Ramalingam, T.
Synthesis 2001, 1341–1345; (l) Kumar, K. A.; Kasthuraiah, M.; Reddy, C. S.;
Reddy, C. D. Tetrahedron Lett. 2001, 42, 7873–7875; (m) Yadav, J. S.; Reddy, B. V.
S.; Reddy, K. B.; Raj, K. S.; Prasad, A. R. J. Chem. Soc., Perkin Trans. 1 2001, 1939–
1941; (n) Lu, J.; Bai, Y. Synthesis 2002, 466–470; (o) Salehi, P.; Dabiri, M.;
Zolfigol, M. A.; Fard, M. A. B. Tetrahedron Lett. 2003, 44, 2889–2891; (p) Sabitha,
G.; Kiran Kumar Reddy, G. S.; Bhaskar Reddy, K.; Yadav, J. S. Tetrahedron Lett.
2003, 44, 6497–6499; (q) De, S. K.; Gibbs, R. A. Synthesis 2005, 1748–1750; (r)
Han, X.; Xu, F.; Luo, Y.; Shen, Q. Eur. J. Org. Chem. 2005, 1500–1503.
7. (a) Stadler, A.; Kappe, C. O. J. Chem. Soc., Perkin Trans. 1 2000, 1363–1368; (b)
Stefani, H. A.; Gatti, P. M. Synth. Commun. 2000, 30, 2165–2173; (c) Kappe, C. O.;
Kumar, D.; Varma, R. S. Synthesis 1999, 1799–1803.
8. (a) Lewandowski, K.; Murer, P.; Svec, F.; Frechet, J. M. J. Chem. Commun. 1998,
2237–2238; (b) Lewandowski, K.; Murer, P.; Svec, F.; Frechet, J. M. J. J. Comb.
Chem. 1999, 1, 105–112; (c) Wipf, P.; Cunningham, A. A. Tetrahedron Lett. 1995,
36, 7819–7822; (d) Kappe, C. O. Bioorg. Med. Chem. Lett. 2000, 10, 49–51; (e)
Studer, A.; Jeger, P.; Wipf, P.; Curran, D. P. J. Org. Chem. 1997, 62, 2917–2924.
9. (a) Volochnyuk, D. M.; Ryabukhin, S. V.; Plaskon, A. S.; Grygorenko, O. O.
Synthesis 2009, 3719–3743; (b) Ryabukhin, S. V.; Plaskon, A. S.; Ostapchuk, E.
N.; Volochnyuk, D. M.; Shishkin, O. V.; Shivanyuk, A. N.; Tolmachev, A. A. Org.
Lett. 2007, 9, 4215–4218; (c) Ryabukhin, S. V.; Plaskon, A. S.; Ostapchuk, E. N.;
Volochnyuk, D. M.; Shishkin, O. V.; Tolmachev, A. A. J. Fluorine Chem. 2008, 129,
625–631; (d) Ryabukhin, S. V.; Plaskon, A. S.; Ostapchuk, E. N.; Volochnyuk, D.
M.; Tolmachev, A. A. Synthesis 2007, 417–427; (e) Zhu, Y.-L.; Pan, Y.-J.; Huang,
S.-L. Synth. Commun. 2004, 34, 3167–3174; (f) Zhu, Y.-L.; Huang, S.-L.; Pan, Y.-J.
Eur. J. Org. Chem. 2005, 2354–2367; (g) Zhu, Y.-L.; Pan, Y.-J.; Huang, S.-L.
Heterocycles 2005, 65, 133–142.
Figure 3. Molecular structure of compound 10b.
did not lead to any changes in the reaction outcome (i.e., the prod-
ucts 7a,b and 8a were obtained, respectively). We also prepared
compound 914 and subjected it to reaction with ureas 6a,b,f under
the conditions described above. In these cases, complex mixtures
were obtained. Therefore, we assumed that the formation of car-
boxylic acids 8a,b occurs via normal hydrolysis of the correspond-
ing esters. Indeed, ester 7f (which was obtained from 8a using a
standard method16) underwent hydrolysis to 8a upon reaction
with Me3SiCl in DMF and subsequent work-up (Scheme 4).
Reaction of ester 5, benzaldehyde, and thioureas 6h,i in the
presence of Me3SiCl in DMF led to the formation of tetrahydropyr-
imidines 10a,b and 11a,b in 70–80% combined yields (Scheme
5).17 As in the previous cases, complete regioselectivity was ob-
served. Nevertheless, the diastereoselectivity of the reaction was
moderate (10a:11a = 3:1, 10b:11b = 9:1). Both major isomers
10a,b were isolated in 40% and 61% yields, respectively. The stereo-
chemistry of products 10a,b was assigned by X-ray diffraction
(Figs. 2 and 3).18 Whereas minor isomer 11a (de 85%) was also iso-
lated, compound 11b could only be detected in the crude product
by NMR and GC–MS.
The formation of compounds 10a,b and 11a,b is connected to
our previous results on Biginelli-type reactions involving trifluoro-
methyl-substituted diketones.9c This can be rationalized from the
similarity of the electronic properties of the CF3 and COOEt substit-
10. (a) Bussolari, J. C.; McDonnell, P. A. J. Org. Chem. 2000, 65, 6777–6779; Several
examples of solid-phase synthesis of 3,4-dihydropyrimidine-2-ones
employing phenylpyruvic and 2-oxobutyric acids as the methylene
component have been reported recently, see: (b) Li, W.; Lam, Y. J. Comb.
Chem. 2005, 7, 721–725.
uents (r
p = 0.54 and 0.45, respectively).19 As the acceptor properties
of the carboxyethyl group are somewhat diminished compared to
the trifluoromethyl moiety, stable hydrates are formed only from
monosubstituted thioureas 6h,i. Therefore, in the light of its behav-
ior in the Biginelli reaction, the acylpyruvate 5 occupies an interme-
diate position between trifluoromethyl-substituted b-diketones
and common b-dicarbonyl compounds such as ethyl acetoacetate.
In conclusion, the chlorotrimethylsilane-promoted Biginelli
reaction involving ethyl 2,4-dioxo-4-phenylbutanoate (5) as the
b-dicarbonyl component is an efficient method for the synthesis
of di- and tetrahydropyrimidine derivatives possessing two func-
tional groups with orthogonal reactivity.
11. General procedure for the Biginelli reactions. A mixture of ester 5 (4 mmol),
benzaldehyde (4 mmol), thiourea
6 (6 mmol), and dry DMF (10 mL) was
sonicated for 1 h at rt to dissolve the starting materials, and then
chlorotrimethylsilane (16 mmol) was added dropwise. The resulting mixture
was allowed to stand for 3–4 d and then poured into water (20–30 mL). The
suspension was sonicated for 1 h and the precipitate was filtered and washed
with a small amount of iPrOH. The filtrate was evaporated under reduced
pressure, and the residue was triturated with a small amount of iPrOH and
filtered again. The combined solids were recrystallized to yield the products 7–
9 (see Schemes 2–4).
12. Ethyl 5-benzoyl-2-oxo-6-phenyl-1,2,3,6-tetrahydropyrimidine-4-carboxylate (7a):
Yield: 84%; mp 180 °C (2-propanol). 1H NMR (500 MHz, DMSO-d6): d 0.85 (t,
3JHH = 7.1 Hz, 3H, CH2CH3), 3.50–3.72 (m, 2H, CH2CH3), 5.33 (s, 1H, 4-HDHPM),
Acknowledgments
7.23 (m, 3H, 2,4,6-HPh), 7.31 (t, 3JHH = 7.2 Hz, 2H, 3,5-HPh), 7.38 (t, 3JHH = 7.8 Hz,
3
0
0
2H, 3,5-HPh ), 7.46-7.54 (d+t, JHH = 7.8 Hz, 3H, 2,4,6-HPh ), 7.86 (s, 1H, NH), 9.16
(s, 1H, NH). 13C NMR (125 MHz, DMSO-d6): d 13.5, 56.8, 62.3, 115.0, 126.9,
128.4, 128.9, 129.2, 133.1, 133.9, 138.6, 142.9, 152.3, 161.9, 193.6. APSI MS:
M++1 = 351. Anal. Calcd for C20H18N2O4: C, 68.56; H, 5.18; N, 8.00. Found: C,
68.42; H, 5.30; N, 8.08.
The authors thank Mr. Vitaliy V. Polovinko for NMR measure-
ments and Mrs. Olga V. Manoylenko for chromatographic
separations.