SCHEME 1
N-Isopropylidene-N′-2-nitrobenzenesulfonyl
Hydrazine, a Reagent for Reduction of Alcohols
via the Corresponding Monoalkyl Diazenes
Mohammad Movassaghi* and Omar K. Ahmad
Department of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139
ReceiVed NoVember 11, 2006
NBSH in the reduction of allylic, benzylic, and saturated
alcohols.3b,c This direct reduction of alcohols via the corre-
sponding monoalkyl diazene intermediates under mild reaction
conditions presents a highly versatile methodology for organic
synthesis.6 We recently reported the use of the related reagent
N-isopropylidene-N′-2-nitrobenzenesulfonyl hydrazine (IPN-
BSH) for a difficult allylic reductive transposition step in our
total syntheses of (-)-acylfulvene and (-)-irofulven.7 Herein
we report our results on the general utility of IPNBSH, a reagent
complimentary to NBSH, for conversion of alcohols to the
corresponding monoalkyl diazene intermediates.
The reagent N-isopropylidene-N′-2-nitrobenzenesulfonyl hy-
drazine (IPNBSH) is used in the reduction of alcohols via
the loss of dinitrogen from transiently formed monoalkyl
diazene intermediates accessed by sequential Mitsunobu
displacement, hydrolysis, and fragmentation under mild
reaction conditions.
The stereospecific displacement of an alcohol by the reagent
NBSH under the Mitsunobu reaction conditions affords the
corresponding 1,1-disubstituted sulfonyl hydrazine 2 (Scheme
1).3 Warming of the reaction mixture to ambient temperature
provides the corresponding monoalkyl diazene 3 by elimination
of 2-nitrobenzenesulfinic acid. Sigmatropic3a,b loss of dinitrogen
from the unsaturated monoalkyl diazene or expulsion of
dinitrogen via a free-radical3c pathway from the saturated
monoalkyl diazene affords the corresponding reduction product.
The thermal sensitivity of NBSH in solution and the corre-
sponding Mitsunobu adduct 2 necessitate the execution of the
initial step in these transformations at subambient temperatures
(-30 to -15 °C). Lower reaction temperatures obviate a
competitive and undesired Mitsunobu reaction of the alcohol
substrate with 2-nitrobenzenesulfinic acid, the thermal decom-
position8 product of NBSH or adduct 2.3 For less reactive
alcohols, the use of higher substrate concentrations and excess
reagents in N-methyl morpholine has been described.3b,c
The loss of dinitrogen from monoalkyl diazene intermediates
is common in a wide range of transformations in organic
chemistry.1,2 Several powerful methodologies for carbonyl
reduction involve initial condensation with an arenesulfonyl
hydrazine followed by reduction of the corresponding hydrazone
leading to the loss of dinitrogen. In 1996, Myers reported a
highly efficient, mild, and stereospecific conversion of a variety
of propargylic alcohols to the corresponding allenes3a via a
Mitsunobu4 reaction using the reagent 2-nitrobenzenesulfonyl
hydrazide5 (NBSH). Subsequent reports discussed the use of
(1) For representative examples, see: (a) Szmant, H. H.; Harnsberger,
H. F.; Butler, T. J.; Barie, W. P. J. Org. Chem. 1952, 74, 2724. (b) Nickon,
A.; Hill, A. S. J. Am. Chem. Soc. 1964, 86, 1152. (c) Corey, E. J.; Cane,
D. E.; Libit, L. J. Am. Chem. Soc. 1971, 93, 7016. (d) Hutchins, R. O.;
Kacher, M.; Rua, L. J. Org. Chem. 1975, 40, 923. (e) Kabalka, G. W.;
Chandler, J. H. Synth. Commun. 1979, 9, 275. (f) Corey, E. J.; Wess, G.;
Xiang, Y. B.; Singh, A. K. J. Am. Chem. Soc. 1987, 109, 4717. (g) Myers,
A. G.; Kukkola, P. J. J. Am. Chem. Soc. 1990, 112, 8208. (h) Myers, A.
G.; Finney, N. S. J. Am. Chem. Soc. 1990, 112, 9641. (i) Guziec, F. S., Jr.;
Wei, D. J. Org. Chem. 1992, 57, 3772. (j) Wood, J. L.; Porco, J. A., Jr.;
Taunton, J.; Lee, A. Y.; Clardy, J.; Schreiber, S. L. J. Am. Chem. Soc.
1992, 114, 5898. (k) Bregant, T. M.; Groppe, J.; Little, R. D. J. Am. Chem.
Soc. 1994, 116, 3635. (l) Ott, G. R.; Heathcock, C. H. Org. Lett. 1999, 1,
1475. (m) Chai, Y.; Vicic, D. A.; McIntosh, M. C. Org. Lett. 2003, 5, 1039.
(n) Sammis, G. M.; Flamme, E. M.; Xie, H.; Ho, D. M.; Sorensen, E. J. J.
Am. Chem. Soc. 2005, 127, 8612.
(2) (a) Kosower, E. M. Acc. Chem. Res. 1971, 4, 193. (b) Tsuji, T.;
Kosower, E. M. J. Am. Chem. Soc. 1971, 93, 1992.
(3) (a) Myers, A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492. (b)
Myers, A. G.; Zheng, B. Tetrahedron Lett. 1996, 37, 4841. (c) Myers, A.
G.; Movassaghi, M.; Zheng, B. J. Am. Chem. Soc. 1997, 119, 8572.
(4) (a) Mitsunobu, O. Synthesis 1981, 1. (b) Hughes, D. L. Org. React.
1982, 42, 335.
We recently found the use of the reagent IPNBSH to be
advantageous over NBSH in a surprisingly difficult9 reductive
(6) For examples in the utility of NBSH in synthesis, see: (a) Shepard,
M. S.; Carreira, E. M. J. Am. Chem. Soc. 1997, 119, 2597. (b) Corey, E. J.;
Huang, A. X. J. Am. Chem. Soc. 1999, 121, 710. (c) Arredondo, V. M.;
Tian, S.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1999, 121, 3633.
(d) Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. 1999, 121, 9562. (e)
Charette, A. B.; Jolicoeur, E.; Bydlinski, G. A. S. Org. Lett. 2001, 3, 3293.
(f) Haukaas, M. H.; O’Doherty, G. A. Org. Lett. 2002, 4, 1771. (g) Rega´s,
D.; Afonso, M. M.; Rodr´ıguez, M. L.; Palenzuela, J. A. J. Org. Chem.
2003, 68, 7845. (h) McGrath, M. J.; Fletcher, M. T.; Ko¨nig, W. A.; Moore,
C. J.; Cribb, B. W.; Allsopp, P. G.; Kitching, W. J. Org. Chem. 2003, 68,
3739. (i) Ng, S.-S., Jamison, T. F. Tetrahedron 2005, 61, 11405. (j) Michael,
F. E.; Duncan, A. P.; Sweeney, Z. K.; Bergman, R. G. J. Am. Chem. Soc.
2005, 127, 1752. (k) Charest, M. G.; Lerner, C. D.; Brubaker, J. D.; Siegel,
D. R.; Myers, A. G. Science 2005, 308, 395.
(5) (a) Dann, A. T.; Davies, W. J. Chem. Soc. 1929, 1050. (b) Myers,
A. G.; Zheng, B.; Movassaghi, M. J. Org. Chem. 1997, 62, 7507. (c) Myers,
A. G.; Movassaghi M. In e-Encyclopedia of Reagents for Organic Synthesis;
Paquette, L. A., Ed; John Wiley & Sons: New York, 2003.
(7) Movassaghi, M.; Piizzi, G.; Siegel, D. S.; Piersanti, G. Angew. Chem.,
Int. Ed. 2006, 45, 5859.
(8) Hu¨nig, S.; Mu¨ller, H. R.; Thier, W. Angew. Chem., Int. Ed. Engl.
1965, 4, 271.
10.1021/jo062325p CCC: $37.00 © 2007 American Chemical Society
Published on Web 02/03/2007
1838
J. Org. Chem. 2007, 72, 1838-1841