8
K.M. Khan et al.
The obtained product, if solid, was recrystallised from ethanol and in case of liquid was
distilled under reduced pressure.
3,4-Dimethyl-9-anilinoacridine (3) Yield 0.15 g (82%); Rf ¼ 0.65 (hexane/ethyl acetate,
1
8: 2); m.p. 152–154ꢀC; H NMR (300 MHz, CDCl3): ꢀ 8.00 (d, 2H, J ¼ 6.2 Hz, H-5,8), 7.6
(ddd, 1H, J ¼ 7.9, J ¼ 6.9, J ¼ 1.4 Hz, H-6),y 7.5 (br.s, 1H, N-H), 7.35 (ddd, 1H, J ¼ 7.9,
¨
J ¼ 7.1, J ¼ 1.5 Hz, H-7), 7.24 (m, 5H, Ar-H), 6.81 (d, 2H, J ¼ 7.1 Hz, H-1,2), 2.81
(s, 3H, CH3), 1.57 (s, 3H, CH3); IR (KBr) ꢁmax 3010, 2990, 1715, 1605, 1514, 1250, 1170,
1010 cmꢂ1; MS: m/z (%) ¼ 298 (Mþ), 222 (100), 204 (5), 281 (27), 84 (8), 82 (13); Anal.
Calcd for C21H18N2: C, 84.53; H, 6.08; N, 9.39; Found: C, 84.08; H, 6.16; N, 9.45.
Acknowledgements
One of us, Mr Zia-Ullah, is thankful to the Higher Education Commission (HEC) Pakistan for
granting a ‘‘Merit Scholarship for Ph.D. Studies in Science and Technology 200 Scholarships.’’ We
are also thankful to Pakistan Telecommunication Company Limited (PTCL) for financial assistance.
References
Bonse, S., Santelli-Rouvier, C., Barbe, J., & Krauth-Siegel, R.L. (1999). Inhibition of Trypanosoma
cruzi trypanothione reductase by acridines: Kinetic studies and structure-activity relationships.
Journal of Medicinal Chemistry, 42, 5448–5454.
Chavalitshewinkoon, P., Wilairat, P., Gamage, S., Denny, W., Figgitt, D., & Ralph, R. (1993).
Structure-activity relationships and modes of action of 9-anilinoacridines against chloroquine-
resistant Plasmodium falciparum in vitro. Antimicrobial Agents And Chemotherapy, 37,
403–406.
Dzierzbicka, K., Kolodziejczyk, A.M., Wysocka-Skrzela, B., Mysliwski, A., & Sosnowska, D.
´
(2001). Synthesis and antitumor activity of conjugates of muramyldipeptide, normuramyldi-
peptide, and desmuramylpeptides with acridine/acridone derivatives. Journal of Medicinal
Chemistry, 44, 3606–3615.
Gamage, S.A., Spicer, J.A., Atwell, G.J., Finlay, G.J., Baguley, B.C., & Denny, W.A. (1999).
Structure-activity relationships for substituted bis(acridine-4-carboxamides): A new class of
anticancer agents. Journal of Medicinal Chemistry, 42, 2383–2393.
Groundwater, P.W., & Munawar, M.A. (1997). In A.R. Katritzky (Ed.), Advances in Heterocyclic
Chemistry (Vol. 70, p. 89). San Diego: Academic Press.
Kirk, S.R., Luedtke, N.W., & Tor, Y. (2000). Neomycin-acridine conjugate: A potent inhibitor of
rev-RRE binding. Journal of the American Chemical Society, 122, 980–981.
Lee, H.H., Wilson, W.R., Ferry, D.M., van Zijl, P., Pullen, S.M., & Denny, W.A. (1996). Hypoxia-
selective antitumor agents. 13. Effects of acridine substitution on the hypoxia-selective
cytotoxicity and metabolic reduction of the bis-bioreductive agent nitracrine N-oxide. Journal
of Medicinal Chemistry, 39, 2508–2517.
Lin, T.P., Chang, C.P., Tseng, R.T., & Wang, J.P. (2002). Synthesis, anti-allrgic and anti-
inflamatory activities of N-substituted benzyl-6 (or 7)-chloro-2,3,4,9-tetrahydrofuro[2,3-b]
quinolin-3,4-diones. Chinese Pharamaceutical Journal, 54, 115–126.
´
Lorente, A., Fernandez-Saiz, M., Espinosa, J.F., Jaime, C., Lehn, J.M., & Vigneron, J.P. (1995).
Cyclo-bis-intercalands with acridine subunits linked by rigid spacers. Tetrahedron Letters, 36,
5261–5265.
Magiatis, P., Mitaku, S., Skaltsounis, A.L., Tillequin, F., Koch, M., Pierre, A., & Atassi, G. (1999).
Synthesis and cytotoxic activity of 1-alkoxy- and 1-amino-2-hydroxy-1,2-dihydroacronycine
derivatives. Chemical & Pharmaceutical Bulletin, 47, 611–614.