Scheme 1
aqueous media, and there still is a need for alternative
available 4-bromotrimethylsilylphenyl acetylene led to the
diphenylphosphanoethane (dppe) derivative in 55% yield.
Treatment with elemental sulfur (1:2 mole ratio) in toluene
gave the thiophosphano product in 88% yield, which was
then engaged in the desilylation step using K2CO3 in a
mixture of CH2Cl2/MeOH. The corresponding phosphane
sulfide 2 was obtained in 100% yield. The Sonogashira
coupling between the thiophosphano product 2 and the iodide
39 was then performed and afforded the corresponding DPPS
4 in 50% yield. This methodology is particularly interesting,
as it would allow the synthesis of analogues.
systems. In the course of our recent ongoing program directed
toward the production of novel fluorophores6 and on the basis
of recent work from Lobana et al.,7 we envisaged that
phosphane sulfide derivatives might be excellent candidates
for complexation and detection of Hg2+. Because there is
no precedent on such a fluorescent family, we therefore wish
to describe our preliminary results on the synthesis and
applications of a novel sensor.
An issue for the success was the design and the easy
preparation of the fluorescent molecule. Anticipating that 1,2-
bis(diphenyl thiophosphinophenyl)ethane could form a strong
complex with mercury, we decided to prepare diphosphane-
bearing polyphenylethynyl fluorophores substituted by an
ether group and to study their complexing and photophysical
properties.8 Scheme 1 outlines the synthesis of the DPPS
ligand 4. The reaction between the 1,2-bis(dichlorophospha-
no)ethane and the Grignard derivative of the commercially
The DPPS derivative 4 shows an intense absorption band
in the UV region (ꢀ ) 1.5 × 105 L mol-1 cm-1) and a
fluorescence quantum yield (ΦF) of 0.1 in acetonitrile. The
emission maxima are indeed strongly dependent on the
(4) (a) Kim, I. B.; Ergodan, B.; Wilson, J. N.; Bunz, U. H. F. Chem.-
Eur. J. 2004, 10, 6247-6254. (b) Caballero, A.; Martinez, R.; Lloveras,
V.; Ratera, I.; Vidal-Gancedo, J.; Wurst, K.; Tarraga, A.; Molina, P.; Veiana,
J. J. Am. Chem. Soc. 2005, 127, 15666-15667. (c) Wang, J; Qian, X. Chem.
Commun. 2006, 109-111. (d) Winkler, J. D.; Bowen, C. M.; Michelet, V.
J. Am. Chem. Soc. 1998, 120, 3237-3242. (e) Metivier, R.; Leray, I.; Valeur,
B. Chem.-Eur. J. 2004, 10, 4480-4490. (f) Metivier, R.; Leray, I.; Lebeau,
B.; Valeur, B. J. Mater. Chem. 2005, 15, 2965-2973. (g) Zheng, H.; Qian,
Z.-H.; Xu, L.; Yuan, F.-F.; Lan, L.-D.; Xu, J.-G. Org. Lett. 2006, 8, 859-
861. (h) Zhao, Y.; Zhong, Z. J. Am. Chem. Soc. 2006, 128, 9988-9989.
(5) (a) Ono, A.; Togashi, H. Angew. Chem., Int. Ed. 2004, 43, 4300-
4302. (b) Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. Am. Chem.
Soc. 2005, 127, 16030-16031. (c) Yang, Y. K.; Yook, K. J.; Tae, J. J. Am.
Chem. Soc. 2005, 127, 16760-16761. (d) Nolan, E. M.; Racine, M. E.;
Lippard, S. J. Inorg. Chem. 2006, 45, 2742-2749. (e) Nolan, E. M.; Lippard,
S. J. J. Am. Chem. Soc. 2003, 125, 14270-14271.
(6) (a) Metivier, R.; Amengual, R.; Leray, I.; Michelet, V.; Genet, J. P.
Org. Lett. 2004, 6, 739-742. (b) Ha-Thi, M. H.; Souchon, V.; Hamdi, A.;
Metivier, R.; Alain, V.; Nakatani, K.; Lacroix, P. G.; Genet, J. P.; Michelet,
V.; Leray, I. Chem.-Eur. J. 2006, 12, 9056-9065.
(7) (a) Lobana, T. S.; Verma, R.; Singh, A.; Shikha, M.; Castineiras, A.
Polyhedron 2002, 21, 205-209. (b) Lobana, T. S.; Sandhu, M. K.; Tiekink,
E. R. J. Chem. Soc., Dalton Trans. 1988, 1401-1403.
(8) For a recent review on organophosphorus π-conjugated materials,
see: Baumgartner, T.; Re´au, R. Chem. ReV. 2006, 106, 4681-4727 and
references cited therein.
Figure 1. Absorption of DPPS 4 (3.3 µM) in the presence of an
increasing concentration of Hg2+ in CH3CN-H2O (80:20 v/v) at
pH ) 4. Inset: titration curves at 305 and 345 nm.
1134
Org. Lett., Vol. 9, No. 6, 2007