1370
C. Baldoli et al. / Journal of Organometallic Chemistry 692 (2007) 1363–1371
[9] V. Buhler, Kollidon: Polyvinylpyrrolidone for the Pharmaceutical
¨
square wave voltammetry (SWV) characterizations of the
PVP conjugated polymers 16–19 were carried out using
an Autolab PGSTAT 12 potentiostat/galvanostat
(EcoChemie, The Netherlands) run by a PC with GPES
software, with the following set of experimental parame-
ters: 0.002 s modulation time; 0.1 s interval time; 0.005 V
step potential; 0.025 V modulation amplitude, for DPV,
and 1000 Hz frequency; 0.005 V step potential, 0.025 V
amplitude, in the case of SWV.
Industry, 1999, BASF Ed.
[10] S. Vijayasekaran, T.V. Chirila, Y. Hong, S.G. Tahija, P.D. Dalton,
I.J. Constable, I.L. McAllister, J. Biomater. Sci. Polym. Ed. 7
(1996) 685.
[11] W.R. Gombtz, S.C. Pankey, R. Phan, R. Drager, K. Donaldons,
K.P. Antonsen, A.S. Hoffman, H.V. Raff, Pharm. Res. 11 (1994)
624.
[12] V.P. Torchillin, J. Microencapsul. 15 (1998) 1.
[13] G.P. Bettinetti, P. Mura, A. Liguori, G. Bramanti, Il Farmaco, 1988,
p. 43.
The solutions of the four PVP conjugates (2 · 10ꢀ4 M)
were prepared in highly deionized water (Millipore Milli-
Qꢂ system), with 0.1 M sodium perchlorate (NaClO4,
Sigma–Aldrich, 98+%) as supporting electrolyte. The
working electrode was a glassy carbon GC (Amel, surface
0.071 cm2), the counter electrode was a platinum wire,
while the operating reference electrode was an aqueous
saturated calomel electrode (SCE). The data have been
subsequently referred to the Me10Fc+|Me10Fc (decamethyl-
ferricinium|decamethylferrocene) reference redox couple,
currently proposed as an improved alternative [30–32] to
ferrocene, proposed by IUPAC [33,34], and whose formal
redox potentials in water are ꢀ0.126 V and ꢀ0.283 V
against our aqueous SCE reference and against ferrocene,
respectively. The cell was thermostated at 298 K and the
solutions were carefully deareated by nitrogen bubbling
before the scans. The optimized polishing procedure for
the working GC electrode consisted of surface treatment
with diamond powder (Aldrich, diameter 1 lm) on a wet
cloth (DP-Nap, Struers).
[14] M.C. Tros de llarduya, C. Martin, M.M. Goni, M.C. Martinez-
Oharriz, Drug Dev. Ind. Pharm. 24 (1998) 295.
[15] P. Ferruti, E. Ranucci, G. Spagnoli, L. Sartore, F. Bignotti,
Macromol. Chem. Phys. 196 (1995) 763.
[16] L. Sartore, I. Peroni, P. Ferruti, R. Latini, R. Bernasconi, J. Biomat.
Sci. Polym. Ed. 8 (1997) 741.
[17] F.M. Veronese, L. Sartore, P. Caliceti, O. Schiavon, E. Ranucci, P.
Ferruti, J. Bioact. Compat. Polym. 5 (1990) 167.
[18] (a) E. Ranucci, M. Tarabic, M. Gilberti, A.-C. Albertsson, Macro-
mol. Chem. Phys. 201 (2000) 1219;
(b) E. Ranucci, L. Macchi, R. Annunziata, P. Ferruti, F. Chiellini,
Macromol. Biosci. 4 (2004) 706.
[19] (a) E. Ranucci, P. Ferruti, R. Annunziata, I. Gerges, G. Spinelli,
Macromol. Biosci. 6 (2006) 216;
(b) Z. Liu, S. Rimmer, Macromolecules 35 (2002) 1200.
[20] (a) M. Bencini, E. Ranucci, P. Ferruti, C. Oldani, E. Licandro, S.
Maiorana, Macromolecules 38 (2005) 8211;
(b) W. He, K.E. Gonsalves, J.H. Pickett, C. Halberstadt, Biomacro-
molecules 4 (2003) 75;
(c) J.U.A. Egstro¨m, L.J. Lindgreen, B. Helgee, Macromol. Chem.
Phys. 207 (2006) 536–544.
[21] L. Luo, M. Ranger, D.G. Lessare, D. Le Garrec, S. Gori, J.-C.
Leroux, S. Rimmel, D. Smith, Macromolecules 37 (2004) 4008.
[22] (a) P. Caliceti, O. Schiavon, M. Morpurgo, F.M. Veronese, L.
Sartore, E. Ranucci, P. Ferruti, J. Bioact. Compat. Polym. 10 (1995)
103;
Acknowledgements
(b) L. Sartore, E. Ranucci, P. Ferruti, P. Caliceti, O. Schiavon, F.M.
Veronese, J. Bioact. Compat. Polym. 9 (1995) 411.
[23] C.F. Brunius, E. Ranucci, Macromol. Rapid Commun. 22 (2001)
1474.
[24] Unpublished results.
[25] Unpublished results.
[26] (a) E.W. Neuse, J. Inorg. Organomet. Polym. Mater. 15 (2005) 3;
(b) C. Xue, Z. Chen, F.-T. Luo, K. Palaniappan, D.J. Chesney, J.
Liu, J. Chen, H. Liu, Biomacromolecules 6 (2005) 1810;
(c) J.C. Swarts, Macromol. Symp. 186 (2002) 123.
[27] (a) C. Baldoli, C. Rigamonti, S. Maiorana, E. Licandro, L. Falciola,
P. Mussini, Chem. Eur. J. 12 (15) (2006) 4091;
(b) C. Baldoli, C. Rigamonti, S. Maiorana, P. Mussini, PCT Int.
Appl. (2006), WO 2006006196;
This study was financially supported by the National
Research Council (CNR), Ministero dell’Istruzione e della
Ricerca (MIUR) and PRIN Project ‘‘Design, synthesis and
biomolecular properties of peptide nucleic acids (PNAs)
and their analogs for diagnostic and therapeutic
applications’’.
References
[1] T. Minko, Drug Disc. Today 2 (2005) 15.
[2] T.J. Dickerson, N.N. Reed, K.D. Janda, Chem. Rev. 102 (2002)
3325.
(c) C. Baldoli, E. Licandro, S. Maiorana, D. Resemini, C. Rigamonti,
L. Falciola, M. Longhi, P.R. Mussini, J. Electroanal. Chem. 85
(2005) 97;
(d) C. Baldoli, L. Falciola, E. Licandro, S. Maiorana, P. Mussini, P.
Ramani, C. Rigamonti, G. Zinzalla, J. Organomet. Chem. 89 (2004)
4791.
[3] R. Haag, F. Kratz, Angew. Chem. Int. Ed. (2006) 45.
[4] The therapeutic index of a drug is defined as the ratio of the toxic dose
to the therapeutic dose.
[5] (a) R. Duncan, in: G.S. Kwon (Ed.), Polymeric Drug Delivery
Systems, Marcel Dekker, New York, 2005, pp. 1–92;
(b) R. Duncan, Nat. Rev. Drug Discov. 2 (2003) 347.
[6] (a) F.M. Veronese, G. Pasut, Drug Disc. Today 10 (2005) 1451;
(b) J.M. Harris, R.B. Chess, Nat. Rev. Drug Discov. 2 (2003)
214.
[7] E.S. Barabas, N-Vinyl Amide Polymers, in: H.F. Mark, N.M.
Bikales, C.G. Overberger, G. Menges (Eds.), Encyclopedia of
Polymer Science and Engineering’, vol. 17, John Wiley and Sons,
New York, 1989, pp. 198–257.
[8] E.V. Hart, B.H. Waxman, in: H. Mark, D.F. Othmer, C.G.
Overberger, G.T. Seaborg (Eds.), Encyclopedia of Chemical Tech-
nology, vol. 23, Interscience, New York, 1983, p. 967.
[28] (a) Peter E. Nielsen (Ed.), Peptide Nucleic Acids: Protocols and
Applications, second ed., Horizon Bioscience, Wymondham, UK,
2004;
(b) E. Uhlmann, A. Peyman, G. Breipohl, W.W. David, Angew.
Chem. Int. Ed. 37 (1998) 2796;
(c) A. Jacob, O. Brandt, S. Wuertz, A. Stephan, M. Schnolzer, J.D.
Hoheisel, Production of PNA-arrays for Nucleic Acid Detection, in:
Peter E. Nielsen (Ed.), Peptide Nucleic Acids, second ed., Horizon
Bioscience, Wymondham, UK, 2004, pp. 261–279.
[29] (a) G. Jaouen (Ed.), Bioorganometallics, first ed., Wiley-VCH,
Weinheim, 2005;