A. L. James et al. / Bioorg. Med. Chem. Lett. 17 (2007) 1418–1421
1421
of Gram-negative ones and also as a method of distin-
guishing between these two types of organisms.
Acknowledgments
We thank Drs Sylvain Orenga and Celine Roger-Dal-
bert for their input to this project and for useful discus-
´
sions. We thank BioMerieux SA for funding this project
and the EPSRC mass spectrometry service centre
(Swansea, UK) for high-resolution mass spectra.
Supplementary data
Supplementary data associated with this article can be
Figure 2. Colour resulting from hydrolysis of substrate 8c by L-alanine
aminopeptidase following acidification (left, substrate with enzyme;
right, substrate without enzyme).
References and notes
In contrast to the Gram-negative organisms described
above, and with the exception of substrate 8a, the other
substrates described in this paper inhibited the growth
of the Gram-positive organisms Staphylococcus aureus
and Enterococcus faecalis. In cases where growth had
occurred with substrate 8a, no significant change in col-
ony colour was observed on addition of acetic acid. This
suggests that the substrates had not been hydrolysed by
aminopeptidases.
1. Inoue, K.; Miki, K.; Tamura, K.; Sakazaki, R. J. Clin.
Microbiol. 1996, 34, 1811.
2. Gordon, D. B.; DeGirolami, P. C.; Bolivar, S.; Karafotias,
G.; Eichelberger, K. Am. J. Clin. Pathol. 1988, 90, 210.
3. Wellstood, S. A. J. Clin. Microbiol. 1987, 25, 1805.
4. Giammanco, G.; Buissiere, J.; Toucas, M.; Brault, G.; Le
Minor, L. Ann. Microbiol. (Paris) 1980, A, 181.
5. Sperry, J. F.; Cohenford, M. A.; Campognone, P.;
Lawton, W.; Chee, D. O. J. Clin. Microbiol. 1986, 24,
145.
6. Thomason, J. L.; Gelbart, S. M.; Wilcoski, L. M.;
Peterson, A. K.; Jilly, B. J.; Hamilton, P. R. Obstet.
Gynecol. 1988, 71, 607.
7. Jensch, T.; Fricke, B. J. Basic Microbiol. 1997, 37, 115.
8. Carlone, G. M.; Valadez, M. J.; Pickett, M. J. J. Clin.
Microbiol. 1982, 16, 1157.
9. Fenollar, F.; Raoult, D. Eur. J. Clin. Microbiol. Infect.
Dis. 2000, 19, 33.
10. Doleans, F. Microbiologia 1994, 10, 195.
11. Manafi, M. Int. J. Food Microbiol. 2000, 60, 205.
12. Manafi, M.; Kneifel, W.; Bascomb, S. Microbiol. Rev.
1991, 55, 335.
13. James, A.; Rigby, A. 2004, Patent WO 2004/069804 A1.
14. Trofimov, V. A.; Chupakhin, O. N.; Pushkareva, Z. V.;
Rusinov, V. L. Khim. Geterotsikl. Soedin. 1971, 112.
15. Acheson, R. M.; Birtwistle, D. H. J. Chem. Res. (M)
1986, 3425.
16. Rusinov, V. L.; Chupakhin, O. N.; Trofimov, V. A.;
Kollegova, M. I.; Postovskii, I. Ya. Khim. Geterotsikl.
Soedin 1972, 216.
For the bacterial strains that generated coloured colo-
nies on addition of acetic acid, it was of particular value
to note that the colour remained tightly localised on the
colony and was not seen in the surrounding agar. This
may be due to either the relatively large molecular size
and lipophilic nature of the chromogen or localisation
of the chromogen on or within the microorganism. This
indicates that such substrates have the potential to dis-
criminate aminopeptidase-producing pathogens within
heavily mixed polymicrobial cultures.
In conclusion, a series of novel aminopeptidase sensitive
substrates have been prepared, characterised and evalu-
ated. Many of the substrates proved useful for the detec-
tion of Gram-negative microorganisms. Particularly
interesting was the inhibitory effect of most of the sub-
strates on the growth of Gram-positive organisms and
this could have practical applications in suppressing
the growth of Gram-positive organisms in the presence