Recently, Lautens’ group reported palladium-catalyzed for-
mate reduction of allylic carbonates to form terminal olefins
with excellent regio- and diastereoselectivity.5 This reaction was
also used to prepare chiral fluoroalkylated compounds by
Konno’s group.6 We felt that this methodology might also apply
to solve the problem of regioselectivity in modifying the olefins
formed by RCM.7,8 Herein, we would like to report the
palladium-catalyzed formate reduction of allylic acetates of five-
to eight-membered N-heterocycles to transform the endo-olefin
to the exo-position (eq 1).
Regioselective Palladium-Catalyzed Formate
Reduction of N-Heterocyclic Allylic Acetates
Hsiu-Yi Cheng, Chong-Si Sun, and Duen-Ren Hou*
Department of Chemistry, National Central UniVersity,
Jhongli City, Taoyuan, Taiwan 32001
ReceiVed December 5, 2006
The synthesis of the required allylic acetates of N-heterocycles
1a-d is shown in Scheme 1. Alkylation of N-(alkenyl)-
tosylamides 2a-d9,10 with 2-bromomethylallyl acetate (3)11
provided the dienes 4a-d for ring-closing metathesis. Grubbs’
catalysts were used to perform the ring formation and gave the
five- to eight-membered allyl acetates 1a-d in good yields.
Palladium-catalyzed formate reductions of 2,5-dihydropyrrole
1a are summarized in Table 1. Trialkylphosphonium salts R3-
PHBF4 were used instead of the air-sensitive trialkylphosphines
to simplify the experimental operations.5,12 Tributylphosphine,
the most frequently used ligand in palladium-catalyzed formate
reductions to generate linear, terminal olefins, was tested first
with some common solvents (entries 1-4). We found that the
effects of the solvents are significant. In THF and CH2Cl2, the
endo-product 6a13 dominates; on the other hand, the desired
exo-product 5a14 is more favored in acetonitrile and DMF.
Therefore, DMF was used in the following studies. Raising the
The regioselective palladium-catalyzed formate reduction of
allylic acetates in five- to eight-membered heterocycles is
reported. Reduction of allylic acetates under mild conditions
using allylpalladium chloride dimer, phosphines, and formic
acid/triethylamine in DMF gives the exo-cyclic olefins in
good regioselectivities and high yields. Synthetic application
in preparing N-tosyl-3-oxo-piperidine is also reported.
Ring-closing metathesis (RCM) has become one of the most
effective methods to form heterocyclic compounds.1 However,
modification of the resulting endo-olefin is limited by the poor
selectivity in discriminating between the two olefinic carbon
atoms. For example, hydroboration and oxymercuration of an
unsymmetrically disubstituted endo-olefin formed by RCM gave
a mixture of regioisomers.2,3 The lack of regioselectivity was
also oberved in epoxidation, followed by nucleophilic ring
opening of endo-olefins.4
(5) (a) Lautens, M.; Paquin, J.-F. Org. Lett. 2003, 5, 3391. (b) Hughes,
G.; Lautens, M.; Wen, C. Org. Lett. 2000, 2, 107. (c) Chau, A.; Paquin,
J.-F.; Lautens, M. J. Org. Chem. 2006, 71, 1924.
(6) Konno, T.; Takehana, T.; Mishima, M.; Ishihara, T. J. Org. Chem.
2006, 71, 3545.
(7) Reviews on palladium-catalyzed formate reduction of allylic com-
pounds: (a) Tsuji, J.; Mandai, T. Synthesis 1996, 1. (b) Tsuji, J.; Minami,
I.; Shimizu, I. Synthesis 1986, 623.
(8) Reported formations of exocyclic olefins by palladium-catalyzed
formate reduction of allylic compounds were limited in carbocycles: (a)
Mandai, T.; Matsumoto, T.; Tsuji, J. Synlett 1993, 113. (b) Tanka, M.;
Mukaiyama, C.; Mitsuhashi, H.; Wakamatsu, T. Tetrahedron Lett. 1992,
33, 4165.
(9) Preparation of homoallyl amine: Abd El Samii, Z. K. M.; Al
Ashmawy, M. I.; Mellor, J. M. J. Chem. Soc., Perkin Trans. 1 1988, 2517.
4-Pentenyl amine: Bertrand, M. B.; Wolfe, J. P. Tetrahedron 2005, 61,
6447. 5-Hexenyl amine and its tosylate: Clark, A. J.; Campo, F. D.; Deeth,
R. J.; Filik, R. P.; Gatard, S.; Hunt, N. A.; Laste´coue`res, D.; Thomas, G.
H.; Verlhac, J.-B.; Wongtap, H. J. Chem. Soc. Perkin Teans. 2000, 1, 671.
(10) Preparation of N-tosyl allyl amine: Brummond, K. M.; Chen, H.;
Mitasev, B.; Casarez, A. D. Org. Lett. 2004, 6, 2161. N-Tosyl homoallyl
amine: Mizutani, T.; Ukaji, Y.; Inomata, K. Bull. Chem. Soc. Jpn. 2003,
76, 1251. N-Tosyl 4-pentenyl amine: Schlummer, B.; Hartwig, J. F. Org.
Lett. 2002, 4, 1471.
(11) Magnusson, G.; Lindqvist, F. Chem. Commun. 1990, 1080.
(12) Netherton, M. R.; Fu, G. C. Org. Lett. 2001, 3, 4295.
(13) (a) Yao, Q.; Zhang, Y. J. Am. Soc. Chem. 2004, 126, 74. (b) Audic,
N.; Clavier, H.; Mauduit, M.; Guillemin, J. C. J. Am. Soc. Chem. 2003,
125, 9248. All of the endo-olefins 6a-d were prepared independently to
confirm their absorption in NMR spectra; see Supporting Information.
(14) Fujioka, T.; Nakamura, T.; Yorimitsu, H.; Oshima, K. Org. Lett.
2002, 4, 2257.
(1) Reviews on applications of RCM: (a) Grubbs, R. H.; Miller, S. J.;
Fu, G. C. Acc. Chem. Res. 1995, 28, 446. Schmalz, H.-G. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 1833. (b) Schuster, M.; Blechert, S. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 2036. (c) Grubbs, R. H.; Chang, S. Tetrahedron
1998, 54, 4413. (d) Fu¨rstner, A. Top. Organomet. Chem. 1998, 1, 37. (e)
Schrock, R. R. Top. Organomet. Chem. 1998, 1, 1. (f) Schrock, R. R.
Tetrahedron 1999, 55, 8141. (g) Blechert, S. Pure Appl. Chem. 1999, 71,
1393. (h) Wright, D. L. Curr. Org. Chem. 1999, 3, 211. (i) Maier, M. E.
Angew. Chem., Int. Ed. 2000, 39, 2073. (j) Fu¨rstner, A. Angew. Chem., Int.
Ed. 2000, 39, 3012. (k) Roy, R.; Das, K. Chem. Commun. 2000, 519. (l)
Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592.
(m) Deiters, A.; Martin, S. F. Chem. ReV. 2004. 104, 2199. (n) Walters, M.
A. In Progress in Heterocyclic Chemistry; Joule, J. A., Gribble, G. W.,
Eds.; Pergamon Press: New York, 2003; Vol. 15, p 1.
(2) (a) Skaanderup, P. R.; Madsen, R. J. Org. Chem. 2003, 68, 2115.
(b) Liras, S.; Allen, M. P.; Blake, J. F. Org. Lett. 2001, 3, 3483.
(3) Nguyen, G.; Perlmutter, P.; Rose, M. L.; Vounatsos, F. Org. Lett.
2004, 6, 893.
(4) (a) Marquis, R. W.; Ru, Y.; LoCastro, S. M.; Zeng, J.; Yamashita,
D. S.; Oh, H.-J.; Erhard, K. F.; Davis, L. D.; Tomaszek, T. A.; Tew, D.;
Salyers, K.; Proksch, J.; Ward, K.; Smith, B.; Levy, M.; Cummings, M.
D.; Haltiwanger, R. C.; Trescher, G.; Wang, B.; Hemling, M. E.; Quinn,
C. J.; Cheng, H.-Y.; Lin, F.; Smith, W. W.; Janson, C. A.; Zhao, B.;
McQueney, M. S.; D’Alessio, K.; Lee, C.-P.; Marzuli, A.; Dodds, R. A.;
Blake, S.; Hwang, S.-M.; James, I. E.; Gress, C. J.; Bradley, B. R.; Lark,
M. W.; Gowen, M.; Veber, D. F. J. Med. Chem. 2001, 44, 1380. (b) Marquis,
R. W.; Yamashita, D. S.; Ru, Y.; LoCastro, S. M.; Oh, H.-J.; Erhard, K.
F.; DesJarlais, R. L.; Head, M. S.; Smith, W. E.; Zhao, B.; Janson, C. A.;
Abdel-Meguid, S. S.; Tomaszek, T. A.; Levy, M. A.; Veber, D. F. J. Med.
Chem. 1998, 41, 3563.
10.1021/jo0624896 CCC: $37.00 © 2007 American Chemical Society
Published on Web 03/08/2007
2674
J. Org. Chem. 2007, 72, 2674-2677