ACS Catalysis
Page 10 of 13
(8) (a) Gruda, I. Formation Des Dérivés N- et C-Substitués Au
Hydrogenation/Dehydrogenation Catalysts: Similarities and
1
2
3
4
5
6
7
8
Cours De L'Alkylation De L'Indol-2(3H)-one. Can. J. Chem.
1972, 50, 18-23. (b) Kende, A. S.; Hodges, J. C. Regioselective
C-3 Alkylations of Oxindole Dianion. Synth. Commun. 1982, 12,
1-10.
Divergences. Acc. Chem. Res. 2018, 51, 1558-1569. (j) Maji, B.;
Barman, M. K. Recent Developments of Manganese Complexes
for Catalytic Hydrogenation and Dehydrogenation Reactions.
Synthesis 2017, 49, 3377-3393. (k) Garbe, M.; Junge, K.; Beller,
M. Homogeneous Catalysis by Manganese-Based Pincer
Complexes. Eur. J. Org. Chem. 2017, 4344-4362. (l) Valyaev, D.
A.; Lavigne, G.; Lugan, N. Manganese Organometallic
Compounds in Homogeneous Catalysis: Past, Present, and
Prospects. Coord. Chem. Rev. 2016, 308, 191-235.
(9) Selected reviews: (a) Reed-Berendt, B.G.; Polidano, K.;
Morrill, L. C. Recent Advances in Homogeneous Borrowing
Hydrogen Catalysis using Earth-Abundant First Row Transition
Metals Org. Biomol. Chem. 2019, 17, 1595-1607. (b) Faisca
Phillips, A. M.; Pombeiro, A. J. L.; Kopylovich, M. N. Recent
Advances in Cascade Reactions Initiated by Alcohol Oxidation.
ChemCatChem 2017, 9, 217-246. (c) Obora, Y.; Ishii, Y. Iridium-
Catalyzed Reactions Involving Transfer Hydrogenation, Addition,
N-Heterocyclization, and Alkylation Using Alcohols and Diols as
Key Substrates. Synlett 2011, 30-51. (d) Dobereiner, G. E.;
Crabtree, R. H. Dehydrogenation as a Substrate-Activating
Strategy in Homogeneous Transition-Metal Catalysis. Chem. Rev.
2010, 110, 681-703. (e) Crabtree, R. H. Homogeneous Transition
Metal Catalysis of Acceptorless Dehydrogenative Alcohol
Oxidation: Applications in Hydrogen Storage and to Heterocycle
Synthesis. Chem. Rev. 2017, 117, 9228-9246 (f) Corma, A.;
Navas, J.; Sabater, J. M. Advances in One-Pot Synthesis through
Borrowing Hydrogen Catalysis. Chem. Rev. 2018, 118, 1410-
1459. (g) Huang, F.; Liu, Z.; Yu, Z. C-Alkylation of Ketones and
Related Compounds by Alcohols: Transition-Metal-Catalyzed
Dehydrogenation. Angew. Chem. Int. Ed. 2016, 55, 862-875;
Angew. Chem. 2016, 128, 872-885 (h) Obora, Y. C-Alkylation by
Hydrogen Auto-transfer Reactions. Top. Curr. Chem. 2016,
374:11, pp 1-29. (i) Khusnutdinova, J. R.; Milstein, D. Metal-
Ligand Cooperation. Angew. Chem. Int. Ed. 2015, 54, 12236-
12273; Angew. Chem. 2015, 127, 12406-12445 (j) Gunanathan,
C.; Milstein, D. Bond Activation and Catalysis by Ruthenium
Pincer Complexes. Chem. Rev. 2014, 114, 12024-12087. (k)
Gunanathan, C.; Milstein, D. Applications of Acceptorless
Dehydrogenation and Related Transformations in Chemical
Synthesis. Science 2013, 341, 1229712; l) Marr, A. C.
Organometallic hydrogen transfer and dehydrogenation catalysts
for the conversion of bio-renewable alcohols. Catal. Sci. Technol.
2012, 2, 279-287. (m) Zhang, J.; Leitus, G.; Ben-David, Y.;
Milstein, D. Facile Conversion of Alcohols into Esters and
Dihydrogen Catalyzed by New Ruthenium Complexes. J. Am.
Chem. Soc. 2005, 127, 10840-10841.
(11) (a) Kawahara, R.; Fujita, K.; Yamaguchi, R.
Multialkylation of Aqueous Ammonia with Alcohols Catalyzed
by Water-Soluble Cp*Ir-Ammine Complexes. J. Am. Chem. Soc.
2010, 132, 15108-15111. (b) Imm, S.; Bähn, S.; Neubert, L.;
Neumann, H.; Beller, M. An Efficient and General Synthesis of
Primary Amines by Ruthenium‐Catalyzed Amination of
Secondary Alcohols with Ammonia. Angew. Chem., Int. Ed. 2010,
49, 8126-8129. (c) Fujita, K. I.; Fujii, T.; Yamaguchi, R. Cp*Ir
Complex-Catalyzed N-Heterocyclization of Primary Amines with
Diols:ꢀ A New Catalytic System for Environmentally Benign
Synthesis of Cyclic Amines. Org. Lett. 2004, 6, 3525-3528. (d)
Fujita, K. I.; Yamamoto, K.; Yamaguchi, R. Oxidative
Cyclization of Amino Alcohols Catalyzed by a Cp*Ir Complex.
Synthesis of Indoles, 1,2,3,4-Tetrahydroquinolines, and 2,3,4,5-
Tetrahydro-1-benzazepine. Org. Lett. 2002, 4, 2691-2694. (e) Xu,
Q.; Xie, H.; Zhang, E.-L.; Ma, X.; Chen, J.; Yu, X.-C.; Li, H.
Selective catalytic Hofmann N-alkylation of poor nucleophilic
amines and amides with catalytic amounts of alkyl halides. Green
Chem. 2016, 18, 3940-3944. (f) Montgomery, S. L.; Mangas-
Sanchez, J.; Thompson, M. P.; Aleku, G. A.; Dominguez, B.;
Turner, N. J. A Biocatalytic Cascade for the Amination of
Unfunctionalised Cycloalkanes. Angew. Chem., Int. Ed. 2017, 56,
10491-10494. (g) Rong, Z.-Q.; Zhang, Y.; Bing Chua, R. H.; Pan
H.-J.; Zhao, Y. Dynamic Kinetic Asymmetric Amination of
Alcohols: From A Mixture of Four Isomers to Diastereo- and
Enantiopure α-Branched Amines. J. Am. Chem. Soc. 2015, 137,
4944-4947. (h) Mutti, F.G.; Knaus, T.; Scrutton, N. S.; Breuerand,
M.; Turner, N. J. Conversion of Alcohols to Enantiopure Amines
Through Dual-Enzyme Hydrogen-Borrowing Cascades. Science,
2015, 349, 1525-1529. (i) Akhtar, W. M.; Armstrong, R. J.; Frost,
J. R.; Stevenson, N. G.; Donohoe, T. J. Stereoselective Synthesis
of Cyclohexanes via an Iridium Catalyzed (5 + 1) Annulation
Strategy. J. Am. Chem. Soc. 2018, 140, 11916-11920. (j) Cheang,
D. M. J.; Armstrong, R. J.; Akhtar, W. M.; Donohoe, T. J.
Enantio-convergent Alkylation of Ketones with Racemic
Secondary Alcohols via Hydrogen Borrowing Catalysis. Chem.
Commun., 2020, 56, 3543-3546. (k) Armstrong, R. J.; Akhtar, W.
M.; Young, T. A.; Duarte, F.; Donohoe, T. J. Catalytic
Asymmetric Synthesis of Cyclohexanes by Hydrogen Borrowing
Annulations. Angew. Chem., Int. Ed., 2019, 58, 12558-12562.
(12) (a) Chelucci, G. Recent Advances in Osmium-Catalyzed
Hydrogenation and Dehydrogenation Reactions. Coord. Chem.
Rev. 2017, 331, 1-36. (b) Porcheddu, A.; Chelucci, G. Base-
Mediated Transition-Metal-Free Dehydrative C-C and C-N Bond-
Forming Reactions from Alcohols. Chem. Rec. 2019, 19, 1-39. (c)
S. Thiyagarajan, C. Gunanathan, Ruthenium-Catalyzed α-
Olefination of Nitriles Using Secondary Alcohols. ACS Catal.
2018, 8, 2473-2478. (d) Thiyagarajan, S.; Gunanathan, C. Facile
Ruthenium(II)-Catalyzed α-Alkylation of Arylmethyl Nitriles
Using Alcohols Enabled by Metal–Ligand Cooperation. ACS
Catal. 2017, 7, 5483-5490. (e) Akhtar, W. M.; Cheong, C. B.;
Frost, J. R.; Christensen, K. E.; Stevenson, N. G.; Donohoe, T. J.
Hydrogen Borrowing Catalysis with Secondary Alcohols: A New
Route for the Generation of β-Branched Carbonyl Compounds. J.
Am. Chem. Soc. 2017, 139, 2577-2580. (f) Kishore, J.;
Thiyagarajan, S.; Gunanathan, C. Ruthenium(II)-catalysed Direct
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) Reviews: (a) Guillena, G.; Ramón, D. J.; Yus, M. Alcohols
as Electrophiles in C-C Bond‐Forming Reactions: The Hydrogen
Auto-transfer Process. Angew. Chem. Int. Ed. 2007, 46, 2358-
2364. (b) Obora, Y. Recent Advances inα-Alkylation Reactions
using Alcohols with Hydrogen Borrowing Methodologies. ACS
Catal.2014, 4, 3972-3981. (c) Chelucci, G. Ruthenium and
Osmium Complexes in C-C Bond-forming Reactions by
Borrowing Hydrogen Catalysis. Coord. Chem. Rev. 2017, 331, 1-
36. (d) Cai, Y.; Li, F.; Li, Y.-Q.; Zhang, W.-B.; Liu, F.-H.; Shi,
S.-L. Base Metal-Catalyzed Alcohol C−C Couplings under
Hydrogen Transfer conditions. Tetrahedron Lett. 2018, 59, 1073-
1079. Also see with 3d metals, (e) Irrgang, T.; Kempe, R. 3d-
Metal Catalyzed N- and C-Alkylation Reactions via Borrowing
Hydrogen or Hydrogen Auto transfer. Chem. Rev. 2019, 119,
2524-2549. (f) Corma, A.; Navas, J.; Sabater, M. J. Advances in
One-Pot Synthesis through Borrowing Hydrogen Catalysis. Chem.
Rev., 2018, 118, 1410-1459. (g) Holmes, M.; Schwartz, L. A.;
Krische, M. J. Intermolecular Metal-Catalyzed Reductive
Coupling of Dienes, Allenes, and Enynes with Carbonyl
Compounds and Imines. Chem. Rev., 2018, 118, 6026-6052. (h)
Kallmeier, F.; Kempe, R. Manganese Complexes for
(De)Hydrogenation Catalysis: A Comparison to Cobalt and Iron
Catalysts. Angew. Chem., Int. Ed. 2018, 57, 46-60. (i) Gorgas, N.;
Kirchner,
K.
Isoelectronic
Manganese
and
Iron
ACS Paragon Plus Environment