Shin et al.
cyano phenylvinylene polymers (CN-PPVs), perylene dianhy-
drides and diimides, and fullerenes are the most widely studied
acceptor materials in the areas of OPVs and OFETs. Since the
mid-1990s, fullerene compounds have been the most utilized
acceptor materials for use in solution processable OPVs provid-
ing power conversion efficiencies (PCE) in the range of 2-5%
when combined with selected donor materials.26,36-38 Despite
their success, fullerenes tend to have low absorption coefficients
in the visible range, are difficult to synthesize and purify, are
very expensive, and lead to devices with relatively low open
circuit voltages (Voc).
Recently, several groups have reported high-performance
accepting materials by introducing cyano or fluoro electron-
withdrawing substituents into π-conjugated systems mostly for
application in OFETs39-45 with very few new acceptors being
reported for application in OPVs. Along these lines, our group
has previously reported on novel solution processable accepting
materials based on 2-vinyl-4,5-dicyanoimidazoles (vinazene).46,47
As an extension of this work, we herein report a more complete
synthesis and characterization study of this family of n-type
conjugated materials based on vinazene where by simply
changing the central aromatic segments we could easily tune
the optical properties and HOMO-LUMO energy levels of the
resultant products. Previously, vinazene has been used as a
monomer and/or comonomer in the preparation of dicyanoimi-
dazole-containing polymers with high nitrogen content.48-50 To
the best of our knowledge, we have been the first to synthesize
4,5-dicyanoimidazole-based derivatives for use in organic
electronic applications.
Results and Discussion
Synthesis. The vinazene-based n-type materials were syn-
thesized through the Heck coupling reaction between 1-alkyl-
2-vinyl-4,5-dicyanoimidazole (1-alkylvinazenes) with selected
di- and tribromoaromatics. The synthetic procedure is shown
in Scheme 1a-1b.
Alkylation of vinazene with various alkyl bromides and
iodides (butyl and hexyl) in DMF or acetone using K2CO3 as
base gave the desired products in good yield after recrystalli-
zation in ethanol. Vinazene with a branched alkyl group at the
1-position (ethylhexyl) was also synthesized to further enhance
the solubility of the final n-type products. Ethylhexyl vinazene
was obtained as an oil after purification by column chromatog-
raphy, which solidified on cooling. This material was found to
be unstable if stored at room temperature for a few days, readily
converting into a brown insoluble product due to photoinitiated
polymerization of the active vinyl group on vinazene.49
(13) Siegrist, T.; Fleming, R. M.; Haddon, R. C.; Laudise, R. A.; Lovinger,
A. J.; Katz, H. E.; Bridenbaugh, P.; Davis, D. D. J. Mater. Res. 1995, 10 (9),
2170–2173.
(14) Facchetti, A. Mater. Today 2007, 10 (3), 28–37.
(15) Sirringhaus, H.; Ando, M. MRS Bull. 2008, 33 (7), 676–682.
(16) Chabinyc, M. L.; Jimison, L. H.; Rivnay, J.; Salleo, A. MRS Bull. 2008,
33 (7), 683–689.
(17) Ong, B. S.; Wu, Y. L.; Li, Y. N.; Liu, P.; Pan, H. L. Chem. Eur. J.
2008, 14 (16), 4766–4778.
(18) Liu, J. S.; Kadnikova, E. N.; Liu, Y. X.; McGehee, M. D.; Frechet,
J. M. J. J. Am. Chem. Soc. 2004, 126 (31), 9486–9487.
(19) Yang, F.; Shtein, M.; Forrest, S. R. Nat. Mater. 2005, 4 (1), 37–41.
(20) Peumans, P.; Uchida, S.; Forrest, S. R. Nature (London) 2003, 425
(6954), 158–162.
(21) Breeze, A. J.; Salomon, A.; Ginley, D. S.; Gregg, B. A.; Tillmann, H.;
Horhold, H. H. App. Phys. Lett. 2002, 81 (16), 3085–3087.
(22) Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend,
R. H.; MacKenzie, J. D. Science 2001, 293 (5532), 1119–1122.
(23) Tan, L.; Curtis, M. D.; Francis, A. H. Chem. Mater. 2003, 15 (11),
2272–2279.
(24) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995,
270 (5243), 1789–1791.
The Heck coupling reaction between 1-alkylvinazene and
aromatic bromides was carried out in anhydrous DMF using
bis(tri-tert-butylphosphine)palladium(0) [Pd[P(tBu)3]2] as cata-
lyst and dicyclohexylmethylamine (NCy2Me) as base/HBr
scavenger (Scheme 1b).51 The final products were obtained by
precipitation of the reaction mixture into ethanol followed by
recrystallization of the crude product in DMF/ethanol or THF/
ethanol. The yields range from 75 to 88%, except for compounds
2, 7, 9, 12, 13, and 14. The lower yields (41% to 55%) for
these compounds are mainly due to the relatively poor solubility.
In selected cases, we used ethylhexylvinazene to increase the
product solubility as compared to their hexylvinazene analogues.
Trivinazene substituted products 15 and 16 have also been
synthesized using similar reaction conditions with 1,3,5-
tribromobenzene and 1,3,5-tris(4-bromophenyl)benzene as the
core moiety in yields of 58% and 87%, respectively, as shown
in Scheme 2.
(25) Dennler, G.; Lungenschmied, C.; Neugebauer, H.; Sariciftci, N. S.;
Labouret, A. J. Mater. Res. 2005, 20 (12), 3224–3233.
(26) Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.;
Yang, Y. Nat. Mater. 2005, 4 (11), 864–868.
(27) Lo, S. C.; Burn, P. L. Chem. ReV. 2007, 107 (4), 1097–1116.
(28) Krueger, H.; Janietz, S.; Thesen, M.; Fischer, B.; Wedel, A. Org.
PhotoVoltaics 2004, 5520, 98–109.
(29) Huo, L. J.; Han, M. F.; Li, Y. F. Prog. Chem. 2007, 19 (11), 1761–
1769.
(30) Pappenfus, T. M.; Hermanson, B. J.; Helland, T. J.; Lee, G. G. W.;
Drew, S. M.; Mann, K. R.; McGee, K. A.; Rasmussen, S. C. Org. Lett. 2008, 10
(8), 1553–1556.
(31) Qi, T.; Liu, Y. Q.; Qiu, W. F.; Zhang, H. J.; Gao, X. K.; Liu, Y.; Lu,
K.; Du, C. Y.; Yu, G.; Zhu, D. B. J. Mater. Chem. 2008, 18 (10), 1131–1138.
(32) Facchetti, A.; Mushrush, M.; Katz, H. E.; Marks, T. J. AdV. Mater. 2003,
15 (1), 33–38.
(33) Facchetti, A.; Letizia, J.; Yoon, M. H.; Mushrush, M.; Katz, H. E.;
Marks, T. J. Chem. Mater. 2004, 16 (23), 4715–4727.
(34) Falkenberg, C.; Uhrich, C.; Olthof, S.; Maennig, B.; Riede, M. K.; Leo,
K. J. App. Phys. 2008, 104 (3), 0345061-0345066.
(35) Jones, B. A.; Facchetti, A.; Wasielewski, M. R.; Marks, T. J. J. Am.
Chem. Soc. 2007, 129 (49), 15259–15278.
(36) Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. AdV. Func. Mater. 2003,
13 (1), 85–88.
(37) Yang, X. N.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.;
Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nano Lett. 2005, 5 (4), 579–
583.
(38) Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J. AdV. Func.
Mater. 2005, 15 (10), 1617–1622.
The structure and purity of all the final products have been
characterized and confirmed by 1H NMR, 13C NMR, elemental
analysis, and MALDI-TOF mass spectra measurements.
(39) Bao, Z.; Lovinger, A. J.; Brown, J. J. Am. Chem. Soc. 1998, 120 (1),
207–208.
(40) Shi, M. M.; Chen, H. Z.; Sun, J. Z.; Ye, J.; Wang, M. Chem. Commun.
2003, (14), 1710–1711.
(45) Ando, S.; Murakami, R.; Nishida, J.; Tada, H.; Inoue, Y.; Tokito, S.;
Yamashita, Y. J. Am. Chem. Soc. 2005, 127 (43), 14996–14997.
(46) Shin, R. Y. C.; Kietzke, T.; Sudhakar, S.; Dodabalapur, A.; Chen, Z. K.;
Sellinger, A. Chem. Mater. 2007, 19 (8), 1892–1894.
(41) Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.; Fukai, Y.; Inoue,
Y.; Sato, F.; Tokito, S. J. Am. Chem. Soc. 2004, 126 (26), 8138–8140.
(42) Yoon, M. H.; DiBenedetto, S. A.; Facchetti, A.; Marks, T. J. J. Am.
Chem. Soc. 2005, 127 (5), 1348–1349.
(43) Facchetti, A.; Deng, Y.; Wang, A. C.; Koide, Y.; Sirringhaus, H.; Marks,
T. J.; Friend, R. H. Ang. Chem., Int. Ed. 2000, 39 (24), 4547–4551.
(44) Letizia, J. A.; Facchetti, A.; Stern, C. L.; Ratner, M. A.; Marks, T. J.
J. Am. Chem. Soc. 2005, 127 (39), 13476–13477.
(47) Kietzke, T.; Shin, R. Y. C.; Egbe, D. A. M.; Chen, Z. K.; Sellinger, A.
Macromolecules 2007, 40 (13), 4424–4428.
(48) Subrayan, R. P.; Rasmussen, P. G. Tetrahedron 1999, 55 (2), 353–358.
(49) Johnson, D. M.; Rasmussen, P. G. Macromolecules 2000, 33 (23), 8597–
8603.
(50) Densmore, C. G.; Rasmussen, P. G.; Goward, G. R. Macromolecules
2005, 38 (2), 416–421.
(51) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123 (29), 6989–7000.
3294 J. Org. Chem. Vol. 74, No. 9, 2009