3064
E. Attolino, A. J. Fairbanks / Tetrahedron Letters 48 (2007) 3061–3064
9. (a) Ennis, S. C.; Fairbanks, A. J.; Tennant-Eyles, R. J.;
Yeates, H. S. Synlett 1999, 1387–1390; (b) Ennis, S. C.;
Fairbanks, A. J.; Slinn, C. A.; Tennant-Eyles, R. J.;
Yeates, H. S. Tetrahedron 2001, 57, 4221–4230; (c)
Chayajarus, K.; Chambers, D. J.; Chughtai, M. J.;
Fairbanks, A. J. Org. Lett. 2004, 6, 3797–3800.
aqueous acetonitrile. In this case, although some of the
corresponding 6-O-trifluoroacetate was formed initially,
this material was readily hydrolysed upon work-up,
yielding diol 11b in 90% yield. A second regioselective
glycosylation reaction with donor 10 then smoothly
gave tetrasaccharide 12a. Further protecting group
manipulations and activation of the anomeric centre as
the trichloroacetimidate then allowed glycosylation with
acceptor 2 to finally yield the desired pentasaccharide 13
(Scheme 3).
10. (a) Lergenmuller, M.; Nukada, T.; Kuramochi, K.; Dan,
¨
A.; Ogawa, T.; Ito, Y. Eur. J. Org. Chem. 1999, 1367–
1376; (b) Dan, A.; Lergenmuller, M.; Amano, M.;
¨
Nakahara, Y.; Ogawa, T.; Ito, Y. Chem. Eur. J. 1998, 4,
2182–2190; (c) Ito, Y.; Ohnishi, Y.; Ogawa, T.; Nakahara,
Y. Synlett 1998, 1102–1104; (d) Dan, A.; Ito, Y.; Ogawa,
T. J. Org. Chem. 1995, 60, 4680–4681; (e) Ito, Y.; Ogawa,
T. Angew. Chem., Int. Ed. Engl. 1994, 33, 1765–1767.
11. See, for example: (a) Gelin, M.; Ferrieres, V.; Lefeuvre,
M.; Plusquellec Eur. J. Org. Chem. 2003, 1285–1293; (b)
Sanchez, S.; Bamhaoud, T.; Prandi, J. Tetrahedron Lett.
2000, 41, 7447–7452; (c) Krog-Jensen, C.; Oscarson, S.
J. Org. Chem. 1998, 63, 1780–1784; (d) Krog-Jensen, C.;
Oscarson, S. J. Org. Chem. 1996, 61, 4512–4513.
In conclusion, the development of propargyl mediated
IAD appears to represent a considerable improvement
over the allyl IAD approach in terms of efficiency of
the intramolecular glycosylation step. The work detailed
in this Letter demonstrates that an efficient intra-
molecular glycosylation can be achieved even using a
disarmed glycosyl donor, together with a hindered N-
acetyl glucosamine acceptor, allowing completion of
the total synthesis of the core N-glycan pentasaccharide.
Further investigations exploring the scope of use and
efficiency of propargyl mediated IAD are currently in
progress, and the results will be reported in due course.
12. Fairbanks, A. J. Synlett 2003, 1945–1958.
13. (a) Seward, C. M. P.; Cumpstey, I.; Aloui, M.; Ennis, S.
C.; Redgrave, A. J.; Fairbanks, A. J. Chem. Commun.
2000, 1409–1410; (b) Aloui, M.; Chambers, D.; Cumpstey,
I.; Fairbanks, A. J.; Redgrave, A. J.; Seward, C. M. P.
Chem. Eur. J. 2002, 8, 2608–2621.
14. (a) Cumpstey, I.; Fairbanks, A. J.; Redgrave, A. J. Org.
Lett. 2001, 3, 2371–2374; (b) Cumpstey, I.; Fairbanks, A.
J.; Redgrave, A. J. Monatsh. Chem. 2002, 133, 449–466.
15. Boons, G.-J.; Isles, S. J. Org. Chem. 1996, 61, 4262–4271.
Acknowledgement
The authors gratefully acknowledge the European
Union (Marie Curie Intra-EU Fellowship to E.A.) for
financial support.
16. Fugedi, P.; Tatai, J., OP58, 13th European Carbohydrate
¨
Symposium, August 21–26, 2005; Bratislava, Slovakia.
17. Attolino, E.; Cumpstey, I.; Fairbanks, A. J. Carbohydr.
Res. 2006, 341, 1608–1618.
18. A referee required us to clarify this point. The direct b-
mannosylation procedure developed by Crich has been
used to access a trisaccharide precursor to the core N-
glycan pentasaccharide (a) and also the pentasaccharide
itself (b). However, in order for the process to work
effectively the nitrogen on the glucosamine acceptor must
either be carried through as an azide (a), or as a
sulfonamide (b), and in the latter case the mannosylation
gives an inseparable anomeric mixture of products (b:a,
8:1). See: (a) Dudkin, V. Y.; Crich, D. Tetrahedron Lett.
2003, 44, 1787–1789; (b) Dudkin, V. Y.; Miller, J. S.;
Danishefsky, S. J. Tetrahedron Lett. 2003, 44, 1791–1793.
19. Mootoo, D. R.; Konradsson, P.; Udodong, U.; Fraser-
Reid, B. J. Am. Chem. Soc. 1988, 110, 5583–5584.
20. (a) Crich, D.; Jayalath, P. Org. Lett. 2005, 7, 2277–2280;
(b) Crich, D.; Jayalath, P.; Hutton, T. K. J. Org Chem.
2006, 71, 3064–3070; (c) Crich, D.; Wu, B. Org. Lett. 2006,
8, 4879–4882.
References and notes
1. Wulff, G.; Ro¨hle, G. Angew. Chem., Int. Ed. Engl. 1974,
13, 157–170.
2. Demchenko, A. V. Curr. Org. Chem. 2003, 7, 35–79.
3. (a) Kim, J.-H.; Yang, H.; Park, J.; Boons, G.-J. J. Am.
Chem. Soc. 2005, 127, 12090–12097; (b) Kim, J.-H.; Yang,
H.; Boons, G.-J. Angew. Chem., Int. Ed. 2005, 44, 947–
949.
4. For a review of intramolecular glycosylation see: Jung,
K.-H.; Muller, M.; Schmidt, R. R. Chem. Rev. 2000, 100,
¨
4423–4442.
5. Stork, G.; La Clair, J. J. J. Am. Chem. Soc. 1996, 118,
247–248.
6. Cumpstey, I.; Chayajarus, K.; Fairbanks, A. J.; Redgrave,
A. J.; Seward, C. M. P. Tetrahedron: Asymmetry 2004, 15,
3207–3221.
21. Reports of allenyl sugars are rare. See: (a) Hausherr, A.;
Orschel, B.; Scherer, S.; Reissig, H.-U. Synthesis 2001,
7. (a) Barresi, F.; Hindsgaul, O. J. Am. Chem. Soc. 1991, 113,
9377–9379; (b) Barresi, F.; Hindsgaul, O. Synlett 1992,
759–760; (c) Barresi, F.; Hindsgaul, O. Can. J. Chem.
1994, 72, 1447–1465.
8. (a) Stork, G.; Kim, G. J. Am. Chem. Soc. 1992, 114, 1087–
1088; (b) Stork, G.; La Clair, J. J. J. Am. Chem. Soc. 1996,
118, 247–248; (c) Bols, M. J. Chem. Soc., Chem. Commun.
1992, 913–914; (d) Bols, M. J. Chem. Soc., Chem.
Commun. 1993, 791–792; (e) Bols, M. Tetrahedron 1993,
44, 10049–10060; (f) Bols, M.; Hansen, H. C. Chem. Lett.
1994, 1049–1052.
`
´
1377–1385; (b) Rochet, P.; Vatele, J.-M.; Gore, J. Synthe-
sis 1994, 795–799; (c) Danh, T. T.; Bocian, W.; Kozerski,
L.; Szczukiewicz, P.; Frelek, J.; Chmielewski, M. Eur. J.
Org. Chem. 2005, 429–440; (d) Santos, D. B.; Banaag, A.
R.; Tius, M. A. Org. Lett. 2006, 8, 2579–2582.
22. Mereyala, H. B.; Gurrala, S. R.; Mohan, S. K. Tetra-
hedron 1999, 55, 11331–11342.
23. Mayer, T. G.; Schmidt, R. R. Eur. J. Org. Chem. 1999,
1153–1165.