procedures under benign conditions and is completely atom-
economic in character.
We are grateful to the National Science Foundation of China
(21072069 and 21002036) and the National Basic Research
Program of China (2011CB808600) for support of this research.
Notes and references
1 For selected reviews of visible light photoexcition of an organo-
metallic complex to initiate organic reactions, see: (a) T. P. Yoon,
M. A. Ischay and J. Du, Nat. Chem., 2010, 2, 527; (b) J. M. R.
Narayanam and C. R. J. Stephenson, Chem. Soc. Rev., 2011,
40, 102.
2 For a recent review of chemistry using visible light, see: X. Sala,
I. Romero, M. Rodriguze, E. Lluis and A. Llobet, Angew. Chem.,
Int. Ed., 2009, 48, 2842.
Scheme 3 Two pathways of the epimerization of the product.
its Re is much more favorable than that to its Si face due to the
steric repulsion. When the reaction time was prolonged,
product epi-2 could be converted into the thermodynamically
more stable cis form under the reaction conditions.
2+
3 For reviews of the photochemistry and photophysics of Ru(bpy)3
and related complexes, see: (a) K. Kalyanasundaram, Coord. Chem.
Rev., 1982, 46, 159; (b) A. Juris, V. Balzani, F. Barigelletti,
S. Campagna, P. Belser and A. V. Zelewsky, Coord. Chem. Rev.,
1988, 84, 85.
Two pathways were proposed to explain the epimerization.
In path A, epi-2 could isomerize to 2 through the iminium ion
intermediate with the assistance of MeOH or the ruthenium
catalyst (Scheme 3). Alternatively, excess tBuOK in the reaction
system might promote the epimerization through a deprotonation/
diastereoselective protonation sequence (path B). To gain some
insights into this process, a few control experiments were
carried out. Treatment of 2c (dr = 3 : 1) with MeOH/CH2Cl2
and Ru(bpy)3Cl2, respectively, for 48 h increased the dr to 9 : 1
in both cases, while the dr was dramatically improved to 13 : 1
4 (a) M. A. Ischay, M. E. Anzovino, J. Du and T. P. Yoon, J. Am.
Chem. Soc., 2008, 130, 12886; (b) J. Du and T. P. Yoon, J. Am.
Chem. Soc., 2009, 131, 14604; (c) M. A. Ischay, Z. Lu and
T. P. Yoon, J. Am. Chem. Soc., 2010, 132, 8572; (d) Z. Lu,
M. Shen and T. P. Yoon, J. Am. Chem. Soc., 2011, 133, 1162.
5 (a) J. M. R. Narayanam, J. W. Tucker and C. R. J. Stephenson,
J. Am. Chem. Soc., 2009, 131, 8756; (b) L. Furst, B. S. Matsuura,
J. M. R. Narayanam, J. W. Tucker and C. R. J. Stephenson,
Org. Lett., 2010, 12, 3104; (c) J. W. Tucker, J. M. R. Narayanam,
S. W. Krabbe and C. R. J. Stephenson, Org. Lett., 2010, 12, 368;
(d) J. W. Tucker, J. D. Nguyen, J. M. R. Narayanam,
S. W. Krabbe and C. R. J. Stephenson, Chem. Commun., 2010,
46, 4985.
t
in the presence of BuOK (5 equiv.).12 These results indicated
6 (a) A. G. Condie, J. C. Gonzalez-Gomze and C. R. J. Stephenson,
J. Am. Chem. Soc., 2010, 132, 1464; (b) M. Rueping, C. Vila,
R. M. Koenigs, K. Poscharyny and D. C. Fabry, Chem. Commun.,
2011, 47, 2360.
7 (a) D. A. Nicewicz and D. W. C. MacMillan, Science, 2008,
322, 77; (b) D. A. Nagib, M. E. Scott and D. W. C. MacMillan,
J. Am. Chem. Soc., 2009, 131, 10875; (c) H. W. Shih, M. N. V. Wal,
R. L. Grange and D. W. C. MacMillan, J. Am. Chem. Soc., 2010,
132, 13600.
8 (a) R. G. Kallen and W. P. Jencks, J. Biol. Chem., 1966, 241, 5851;
(b) S. J. Benkovic, P. H. Benkovic and R. Chrzanowski, J. Am.
Chem. Soc., 1970, 92, 523; (c) A. R. Katritzky, H.-Y. He and
A. K. Verma, Tetrahedron: Asymmetry, 2002, 13, 933;
(d) A. R. Katritzky, H.-Y. He and J. Wang, J. Org. Chem.,
2002, 67, 4951; (e) R. Sakai, K. Suzuki, K. Shimamoto and
H. Kamiya, J. Org. Chem., 2004, 69, 1180; (f) D. R.
Ijzendoorn, P. N. M. Botman and R. H. Blaauw, Org. Lett.,
2005, 8, 239; (g) R.-H. Jiao, S. Xu, J.-Y. Liu, H.-M. Ge,
H. Ding, C. Xu, H.-L. Zhu and R.-X. Tan, Org. Lett., 2006,
8, 5709.
that path B was more favorable although we could not rule out
path A at the current stage.
To demonstrate the preparative utility of this methodology,
the reaction of 1c (1.1 g) was performed on a 2.2 mmol scale in
the presence of 1 mol% of Ru(bpy)3Cl2 under our standard
conditions, affording cis-2c in 87% yield with 419 : 1 dr
(eqn (1)). Significantly, this method can be extended to the
synthesis of biologically important hexahydropyrimidine
derivatives in 61% yield (eqn (2)).13
9 (a) S. V. Liebermann, J. Am. Chem. Soc., 1955, 77, 1114;
(b) M. Kerfanto, A. Brault, F. Venien, J. M. Morvan and
A. Le Rouzic, Bull. Soc. Chim. Fr., 1975, 196; (c) M. Sekiya and
H. Sakai, Chem. Pharm. Bull., 1969, 17, 32; (d) A. T. Stewart
and C. R. Hauser, J. Am. Chem. Soc., 1955, 77, 1098.
10 H.-B. Xie, J.-T. Zhu, Z.-X. Chen, S. Li and Y.-M. Wu, J. Org.
Chem., 2010, 75, 7468.
11 (a) L.-Q. Lu, Y.-J. Cao, X.-P. Liu, J. An, C.-J. Yao, Z.-H. Ming
and W.-J. Xiao, J. Am. Chem. Soc., 2008, 130, 6946; (b) L.-Q. Lu,
F. Li, J. An, J.-J. Zhang, X.-L. An, Q.-L. Hua and W.-J. Xiao,
Angew. Chem., Int. Ed., 2009, 48, 9542; (c) X.-F. Wang, Q.-L. Hua,
Y. Cheng, X.-L. An, Q.-Q. Yang, J.-R. Chen and W.-J. Xiao,
Angew. Chem., Int. Ed., 2010, 49, 8379.
ð1Þ
ð2Þ
12 See ESIw for details.
In summary, we have developed an efficient synthesis of
highly substituted tetrahydroimidazole derivatives by means
of intramolecular cyclizations of diamines through a photoredox
catalysis strategy. The reaction itself features simple experimental
13 (a) S. Groszkowki, L. Korzycka and W. Bialasiewicz, Pol. J.
Pharmacol. Pharm., 1973, 25, 573 (Chem. Abstr., 1974,
80, 116181r); (b) K. Drandarov, A. Guggisberg and M. Hesse,
Helv. Chim. Acta, 1999, 82, 229.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 8337–8339 8339