ORGANIC
LETTERS
2007
Vol. 9, No. 9
1797-1800
Diastereomeric Recognition of Chiral
Foldamer Receptors for Chiral Glucoses
Chuang Li, Gui-Tao Wang, Hui-Ping Yi, Xi-Kui Jiang, Zhan-Ting Li,* and
Ren-Xiao Wang*
State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu,
Shanghai 200032, China
ztli@mail.sioc.ac.cn; wangrx@mail.sioc.ac.cn
Received February 27, 2007
ABSTRACT
Three chiral aromatic hydrazide foldamers have been designed and synthesized, in which two R- or S-proline units were incorporated at the
terminals of their backbones. The 1H NMR, circular dichroism (CD), and fluorescent experiments and molecular dynamics simulations revealed
that the foldamers adopted a chiral helical conformation and complexed alkylated glucoses in chloroform with a good diastereomeric selectivity.
The intriguing folded or helical conformation of peptides
and proteins has always fascinated chemists. In the past
decade, there has been considerable interest in developing
foldamers, unnatural oligomers that are capable of folding
into well-defined secondary conformations.1 It has been
expected that progress in this field will eventually lead to
unnatural structures with sizes and functions of biomolecules
such as proteins and DNA.1b One of the interesting functions
of foldamers is their application in molecular recognition.
Depending on the design, binding sites, and cavity size,
foldamers may complex monoterpenes,2 alkylated saccha-
rides,3,4 aliphatic ammoniums,5 water,6 metal ions,7,8 anions,9
and fullerenes.10 However, examples of recognitions of chiral
foldamers for chiral guests are very limited.11 It was revealed
that complexation of achiral foldamers for a chiral guest
could cause significant chiral differentiation for the folded
backbones.2-5 In principle, if one or more chiral units are
incorporated into a folded scaffold to generate an energeti-
(3) Inouye, M.; Waki, M.; Abe, H. J. Am. Chem. Soc. 2004, 126, 2022.
(4) (a) Hou, J.-L.; Shao, X.-B.; Chen, G.-J.; Zhou, Y.-X.; Jiang, X.-K.;
Li, Z.-T. J. Am. Chem. Soc. 2004, 126, 12386. (b) Yi, H.-P.; Shao, X.-B.;
Hou, J.-L.; Li, C.; Jiang, X.-K.; Li, Z.-T. New J. Chem. 2005, 29, 1213.
(5) Li, C.; Ren, S.-F.; Hou, J.-L.; Yi, H.-P.; Zhu, S.-Z.; Jiang, X.-K.; Li,
Z.-T. Angew. Chem., Int. Ed. 2005, 44, 5725.
(6) Garric, J.; Le´ger, J.-M.; Huc, I. Angew. Chem., Int. Ed. 2005, 44,
1954.
(1) (a) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. (b) Hill, D. J.;
Mio, M. J.; Prince, M. R. B.; Hughes, T. S.; Moore, J. S. Chem. ReV. 2001,
101, 3893. (c) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. ReV.
2001, 101, 3219. (d) Cubberley, M. S.; Iverson, B. L. Curr. Opin. Chem.
Biol. 2001, 5, 650. (e) Huc, I. Eur. J. Org. Chem. 2004, 17. (f) Cheng, R.
P. Curr. Opin. Struct. Biol. 2004, 14, 512. (g) Sanford, A.; Yamato, K.;
Yang, X. W.; Yuan, L. H.; Han, Y. H.; Gong, B. Eur. J. Biochem. 2004,
271, 1416. (h) Stone, M. T.; Heemstra, J. M.; Moore, J. S. Acc. Chem. Res.
2006, 39, 11. ( i) Li, Z.-T.; Hou, J.-L.; Li, C.; Yi, H.-P. Chem. Asian J.
2006, 1, 766.
(7) Zhao, Y.; Zhong, Z. J. Am. Chem. Soc. 2006, 128, 9988.
(8) Yi, H.-P.; Wu, J.; Ding, K.-L.; Jiang, X.-K.; Li, Z.-T. J. Org. Chem.
2007, 72, 870.
(9) Chang, K.-J.; Kang, B.-N.; Lee, M.-H.; Jeong, K.-S. J. Am. Chem.
Soc. 2005, 127, 12214.
(10) (a) Wu, Z.-Q.; Shao, X.-B.; Li, C.; Hou, J.-L.; Wang, K.; Jiang,
X.-K.; Li, Z.-T. J. Am. Chem. Soc. 2005, 127, 17460. (b) Hou, J.-L.; Yi,
H.-P.; Shao, X.-B.; Li, C.; Wu, Z.-Q.; Jiang, X.-K.; Wu, L.-Z.; Tung, C.-
H.; Li, Z.-T. Angew. Chem., Int. Ed. 2006, 45, 796.
(11) (a) Maurizot, V.; Dolain, C.; Huc, I. Eur. J. Org. Chem. 2005, 1293.
(b) Daniels, D. S.; Petersson, E. J.; Scheparts, A. J. Am. Chem. Soc. 2007,
129, 1532.
(2) Prince, R. B.; Barnes, S. A.; Moore, J. S. J. Am. Chem. Soc. 2000,
122, 2758.
10.1021/ol070492l CCC: $37.00
© 2007 American Chemical Society
Published on Web 04/06/2007