Organic Letters
Letter
Read, J. A.; Costa, C. R.; Shi, J.; Su, M.; Ye, M.; Zinda, M. J. Med. Chem.
2014, 57, 144.
keteniminium ion intermediate 5′ regioselectively due to the
polarity of the ynamide to afford vinyl gold intermediate 6 or 6′
with an iminium ion moiety. Intermediate 6/6′ fragmentizes into
the α-imino gold carbene 7 and benzaldehyde via N−O and C−
N bond cleavage reaction. Nucleophilic attack of the imino
nitrogen in 7 to gold−carbene followed by elimination of the
gold catalyst leads to the products 3.
In conclusion, we have developed a gold-catalyzed formal [3 +
2] cycloaddition of ynamides with 4,5-dihydro-1,2,4-oxadiazoles.
The reaction provides a concise and regioselective access to
highly functionalized 4-aminoimidazoles likely via the formation
of an α-imino gold carbene intermediate followed by cyclization.
4,5-Dihydro-1,2,4-oxadiazole was found to act as an efficient N-
imino nitrene equivalent in these reactions. The method offers
several advantages such as easily accessible starting materials,
high efficiency, and wide functional group tolerance. Further
extensions of this reaction to the synthesis of other heterocycles
such as sulfur-containing heterocycles are currently underway.
(8) Palkowitz, A. D.; Steinberg, M. I.; Thrasher, K. J.; Reel, J. K.;
Hauser, K. L.; Zimmerman, K. M.; Wiest, S. A.; Whitesitt, C. A.; Simon,
R. L.; Pfeifer, W.; Lifer, S. L.; Boyd, D. B.; Barnett, C. J.; Wilson, T. M.;
Deeter, J. B.; Takeuchi, K.; Riley, R. E.; Miller, W. D.; Marshall, W. S. J.
Med. Chem. 1994, 37, 4508.
(9) Fader, L.; Brault, M.; Desjardins, J.; Dansereau, N.; Lamorte, L.;
Tremblay, S.; Bilodeau, F.; Bordeleau, J.; Duplessis, M.; Gorys, V.;
Gillard, J.; Gleason, J. L.; James, C.; Joly, M.-A.; Kuhn, C.; Llinas-Brunet,
M.; Luo, L.; Morency, L.; Morin, S.; Parisien, M.; Poirier, M.; Thibeault,
C.; Trinh, T.; Sturino, C.; Srivastava, S.; Yoakim, C.; Franti, M. ACS
Med. Chem. Lett. 2016, 7, 525.
(10) Helal, C. J.; Kang, Z.; Lucas, J. C.; Gant, T.; Ahlijanian, M. K.;
Schachter, J. B.; Richter, K. E. G.; Cook, J. M.; Menniti, F. S.; Kelly, K.;
Mente, S.; Pandit, J.; Hosea, N. Bioorg. Med. Chem. Lett. 2009, 19, 5703.
(11) (a) Rossi, E.; Pini, E. Tetrahedron 1996, 52, 7939. (b) Rolfs, A.;
Liebscher, J. J. Org. Chem. 1997, 62, 3480. (c) Marwaha, A.; Singh, P.;
Mahajan, M. P.; Velumurugan, D. Tetrahedron Lett. 2004, 45, 8945.
(d) Bader, H.; Downer, J. D. J. Chem. Soc. 1953, 1636.
(12) For a review, see: Davies, P. W.; Garzon
2015, 4, 694.
́
, M. Asian J. Org. Chem.
ASSOCIATED CONTENT
■
(13) For selected papers, see: (a) Gorin, D. J.; Davis, N. R.; Toste, F. D.
J. Am. Chem. Soc. 2005, 127, 11260. (b) Prechter, A.; Henrion, G.;
Faudot dit Bel, P.; Gagosz, F. Angew. Chem., Int. Ed. 2014, 53, 4959.
(c) Davies, P. W.; Cremonesi, A.; Dumitrescu, L. Angew. Chem., Int. Ed.
2011, 50, 8931. (d) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao,
T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265. (e) Jin, H.;
Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew.
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental details, spectroscopic characterization of all
new compounds, and X-ray crystallographic data for
compounds 3f, 4a, and 4c (PDF)
X-ray crystallographic data for compound 3f (CIF)
X-ray crystallographic data for compound 4a (CIF)
X-ray crystallographic data for compound 4c (CIF)
Chem., Int. Ed. 2016, 55, 794. (f) Gonzal
Sobrino, A. L.; Ballesteros, A. Adv. Synth. Catal. 2016, 358, 1398.
́
ez, J.; Santamaría, J.; Suar
́
ez-
́
(14) Chen, M.; Sun, N.; Chen, H.; Liu, Y. Chem. Commun. 2016, 52,
6324.
(15) (a) Liu, J.; Chen, M.; Zhang, L.; Liu, Y. Chem. - Eur. J. 2015, 21,
1009. (b) Wang, G.; You, X.; Gan, Y.; Liu, Y. Org. Lett. 2017, 19, 110.
(16) (a) Chavan, N. L.; Naik, N. H.; Nayak, S. K.; Kusurkar, R. S.
ARKIVOC 2010, 248. (b) Aitken, R. A.; Raut, S. V. Synlett 1991, 1991,
189.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(17) Zeng, Z.; Jin, H.; Xie, J.; Tian, B.; Rudolph, M.; Rominger, F.;
Hashmi, A. S. K. Org. Lett. 2017, 19, 1020.
Notes
(18) Very recently, Wan et al. reported that HNTf2 could catalyze the
[3 + 2] cycloaddition of ynamides with dioxazoles or N-alkyl-substituted
oxadiazolones to oxazoles or 4-aminoimidazoles, respectively. See:
(a) Zhao, Y.; Hu, Y.; Wang, C.; Li, X.; Wan, B. J. Org. Chem. 2017, 82,
3935. (b) Zhao, Y.; Hu, Y.; Li, X.; Wan, B. Org. Biomol. Chem. 2017, 15,
3413. However, in their work, when free N-H oxadiazolone was
employed, only N-vinylimidazole derived from [3 + 2] cycloaddition
followed by the addition with ynamide was obtained in low yield (ref
18b.). Our results indicated that the use of HNTf2 as the catalyst only
afforded a trace amount of the desired imidazole 3 when substrate 2 with
a N-H group was employed. In addition, 3a was not observed by
treatment of 4a with 5 mol % of catalyst B at 80 °C, indicating that our
reaction does not proceed via 4a. When 4a was treated with 10 mol % of
HNTf2 at 80 °C, only a trace amount of 3a was observed. A good yield of
the imidazole product could be observed in the presence of 1.0 equiv of
HNTf2 when the substrate 2 with a N-R group was used. See ref 20.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Key Research and Development Program
(2016YFA0202900), the National Natural Science Foundation
of China (Grant Nos. 21372244, 21572256, and 21421091), and
the Strategic Priority Research Program of the Chinese Academy
of Sciences (Grant No. XDB20000000) for financial support.
REFERENCES
■
(1) Grimmett, M. R. In Comprehensive Heterocyclic Chemistry;
Katritzky, A. R., Rees, C. W., Potts, K. T., Eds.; Pergamon Press: New
York, 1984; Vol. 5, pp 457−497.
(2) Heravi, M. M.; Daraie, M.; Zadsirjan, V. Mol. Diversity 2015, 19,
577.
(3) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102,
3667.
(4) Choi, J.-H.; Abe, N.; Tanaka, H.; Fushimi, K.; Nishina, Y.; Morita,
A.; Kiriiwa, Y.; Motohashi, R.; Hashizume, D.; Koshino, H.; Kawagishi,
H. J. Agric. Food Chem. 2010, 58, 9956.
(20) The reaction of 1a with 2j bearing an N-R group was also
investigated in the presence of HNTf2. The yields of the desired 3q were
obtained in 28% and 69% at 80 °C in DCE using 15 mol % or 1.0 equiv of
HNTf2, respectively.
(5) Konishi, H.; Ueda, T.; Muto, T.; Manabe, K. Org. Lett. 2012, 14,
4722.
(6) Lin, W.; Long, L.; Yuan, L.; Cao, Z.; Chen, B.; Tan, W. Org. Lett.
2008, 10, 5577.
(7) Su, Q.; Ioannidis, S.; Chuaqui, C.; Almeida, L.; Alimzhanov, M.;
Bebernitz, G.; Bell, K.; Block, M.; Howard, T.; Huang, S.; Huszar, D.;
D
Org. Lett. XXXX, XXX, XXX−XXX