REZNIKOV et al.
1720
1.0, MeOH), mp 147–150°C. IR spectrum, ν, cm–1:
3134 w, 2930 m, 2596 w, 1700 vs, 1490 s, 1447 m,
1435 m, 1414 m, 1354 w, 1311 m, 1261 s, 1215 s,
1169 s, 1140 m, 1098 m, 1086 m, 1015 m, 982 m, 934
m, 897 m, 845 w, 825 vs, 754 s, 718 m, 658 m, 613 m.
1H NMR spectrum (DMSO-d6), δ, ppm: 2.56–2.71 m
(2H, CH2COOH), 3.53–3.61 m (1H, CH), 4.61–4.73 m
Wilcox, D., Carlson, R.P., Carter, G.W., and Djuric, S.W.,
Bioorg. Med. Chem. Lett., 2005, vol. 15, p. 5340.
12. Diwakar, S.D., Bhagwat, S.S., Shingare, M.S., and Gill, C.H.,
Bioorg. Med. Chem. Lett., 2008, vol. 18, p. 4678.
13. Song, W.H., Liu, M.M., Zhong, D.W., Zhu, Y.L.,
Bosscher, M., Zhou, L., Ye, D.Y., and Yuan, Z.H.,
Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 4528. doi
10.1016/j.bmcl.2013.06.045
3
(2H, CH2NH2), 7.05 d (2Harom, JHH 7.5 Hz), 7.62 d
3
14. Sotriffer, C.A. and McCammon, J.A., J. Med. Chem.,
(2Harom, JHH 7.5 Hz), 9.07 s (1Htetrazole), 12.18 s (1H,
OH). 13C NMR spectrum (DMSO-d6), δ, ppm: 38.2
(CH), 41.9 (CH2COOH), 52.8 (CH2NH2), 128.7
(2CHarom), 129.9 (2CHarom), 133.0 (Carom), 138.2
(Carom), 144.3 (Ctetrazole), 174.1 (C=O). Found, %: C
49.48; H 4.22; N 20.96. C11H11ClN4O2. Calculated, %:
C 49.54; H 4.16; N 21.01.
2001, vol. 44, p. 3043.
15. Schames, J.R., Henchman, R.H., Siegel, J.S.,
Sotriffer, C.A., Ni, H., and McCammon, J.A., J. Med.
Chem., 2004, vol. 47, p. 1879. doi 10.1021/jm0341913
16. Dayam, R., Al-Mawsawi, L.Q., Zawahir, Z.,
Witvrouw, M., Debyser, Z., and Neamati, N., J. Med.
Chem., 2008, vol. 51, p. 1136.
17. Crosby, D.C., Lei, X., Gibbs, C.G., McDougall, B.R.,
Robinson, W.E. Jr., and Reinecke, M.G., J. Med.
Chem., 2010, vol. 53, p. 8161.
18. Popova, E.A., Protas, A.V., and Trifonov, R.E., Anti-
Cancer Agents Med. Chem., 2017, vol. 17, p. 1856.
FUNDING
The work was financially supported by the Russian
Science Foundation (project no. 18-13-00447).
19. Kumar, C.N.S.S.P., Parida, D.K., Santhoshi, A.,
Kota, A.K., Sridhar, B., and Rao, V.J., Med. Chem.
Commun., 2011, vol. 2, p. 486.
REFERENCES
1. Ostrovskii, V.A., Popova, E.A., and Trifonov, R.E.,
20. Köhler, S.C. and Wiese, M., J. Med. Chem., 2015, vol. 58,
Adv. Heterocycl. Chem., 2017, vol. 123, p. 1.
p. 3910.
2. Ostrovskii, V.A., Trifonov, R.E., and Popova, E.A.,
Russ. Chem. Bull., 2012, vol. 64, p. 768. doi 10.1007/
s11172-012-0108-4
21. DeMong, D., Dai, X., Hwa, J., Miller, M., Lin, S.-I.,
Kang, L., Stamford, A., Greenlee, W., Yu, W., Wong, M.,
Lavey, B., Kozlowski, J., Zhou, G., Yang, D.-Y.,
Patel, B., Soriano, A., Zhai, Y., Sondey, C., Zhang, H.,
Lachowicz, J., Grotz, D., Cox, K., Morrison, R.,
Andreani, T., Cao, Y., Liang, M., Meng, T., McNamara, P.,
Wong, J., Bradley, P., Feng, K.-I., Belani, J., Chen, P.,
Dai, P., Gauuan, J., Lin, P., and Zhao, H., J. Med.
Chem., 2014, vol. 57, p. 2601.
3. Wei, C.-X., Bian, M., and Gong, G.-H., Molecules,
2015, vol. 20, p. 5528.
4. Lassalas, P., Gay, B., Lasfargeas, C., James, M.J.,
Tran, V., Vijayendran, K.G., Brunden, K.R.,
Kozlowski, M.C., Thomas, C.J., Smith, A.B., Huryn, D.M.,
and Ballatore, C., J. Med. Chem., 2016, vol. 59, p. 3183.
5. Subramanian, V., Knight, J.S., Parelkar, S., Anguish, L.,
Coonrod, S.A., Kaplan, M.J., and Thompson, P.R.,
J. Med. Chem., 2015, vol. 58, p. 1337.
6. Zarezin, D.P., Shmatova, O.I., and Nenajdenko, V.G.,
Mendeleev Commun., 2018, vol. 28, p. 364.
7. Herr, R.J., Bioorg. Med. Chem., 2002, vol. 10, p. 3379.
doi 10.1016/S0968-0896(02)00239-0
8. Matta, C.F., Arabi, A.A., and Weaver, D.F., Eur.
J. Med. Chem., 2010, vol. 45, p. 1868.
9. Allen, F.H., Groom, C.R., Liebeschuetz, J.W.,
Bardwell, D.A., Olsson, T.S., and Wood, P.A., J. Chem.
Inf. Model., 2012, vol. 52, p. 857.
22. Wang, S.-B., Deng, X.-Q., Zheng, Y., Yuan, Y.-P.,
Quan, Z.-S., and Guan, L.-P., Eur. J. Med. Chem., 2012,
vol. 56, p. 139.
23. Yuan, H. and Silverman, R.B., Bioorg. Med.
Chem. Lett., 2007, vol. 17, p. 1651. doi 10.1016/
j.bmcl.2006.12.119
24. Yuan, H. and Silverman, R.B., Bioorg. Med. Chem.,
2006, vol. 14, p. 1331. doi 10.1016/j.bmc.2005.09.067
25. Schwarz, J.B., Colbry, N.L., Zhu, Z., Nichelson, B.,
Barta, N.S., Lin, K., Hudack, R.A., Gibbons, S.E.,
Galatsis, P., DeOrazio, R.J., Manning, D.D.,
Vartanian, M.G., Kinsora, J.J., Lotarski, S.M., Li, Z.,
Dickerson, M.R., El-Kattan, A., Thorpe, A.J.,
Donevan, S.D., Taylor, C.P., and Wustrow, D.J.,
Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 3559. doi
10.1016/j.bmcl.2006.03.083
10. Vilain, S., Cosette, P., Junter, G.-A., and Jouenne, T.,
J. Antimicrob. Chemother., 2002, vol. 49, p. 315.
11. Wagner, R., Mollison, K.W., Liu, L., Henry, C.L.,
Rosenberg, T.A., Bamaung, N., Tu, N., Wiedeman, P.E.,
Or, Y., Luly, J.R., Lane, B.C., Trevillyan, J., Chen, Y.-Wu.,
Fey, T., Hsieh, G., Marsh, K., Nuss, M., Jacobson, P.B.,
26. Burgos-Lepley, C.E., Thompson, L.R., Kneen, C.O.,
Osborne, S.A., Bryans, J.S., Capiris, T., Suman-
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 54 No. 11 2018