I. Bruce et al. / Bioorg. Med. Chem. Lett. 22 (2012) 5445–5450
5449
Table 4
prove valuable in dissecting the relative contributions of individual
isoforms in PI3K signaling pathways.
PK profiles of isoform selective PI3K inhibitors
Compda Doseb
Tmax Cmax
AUC
F
CL
T1/2 Vss
(mg/
kg)
(h)
(l
M)
(l
M.h) (%) (ml/min/
kg)
(h)
(L/
kg)
Acknowledgments
21
24
26
27
10
10
10
5
4
8
05
1
0.28
0.05
1.72
0.49
4.1
0.69
10.8
4.3
21 21
18
57 23
24 4.0
0.7 1.29
0.6 0.4
0.8 1.4
1.8 0.6
We would like to thank Doriano Fabbro for screening com-
pounds in the PIKK assays, Roger Williams of the University of
Cambridge for the PI3Kc crystal structure, Greg Hollingworth for
3
assistance in preparation of the manuscript and our colleagues in
synthetic development and analytical services for support.
a
Results are mean of n = 4 experiments for 21 and 22 and n = 3 experiments for
26 & 27.
b
Dosed p.o. as a 1% suspension in carboxymethyl cellulose (CMC) to female
Wistar rats.
References and notes
1. Vanhaesebroeck, B.; Leevers, S.; Ahmadi, K.; Timms, J.; Katso, R.; Driscoll, P. C.;
Woscholski, R.; Parker, P. J.; Waterfield, M. D. Annu. Rev. Biochem. 2001, 70, 535.
2. Wymann, M.; Pirola, L. Biochim. Biophys. Acta 1998, 1436, 127.
3. Abraham, R. T. DNA Repair 2004, 3, 883.
4. Stein, R. C.; Waterfield, M. D. Mol. Med. Today 2000, 6, 347.
5. Ward, S.; Sotsios, Y.; Dowden, J.; Bruce, I.; Finan, P. Chem. Biol. 2003, 10, 207.
6. Thomas, M.; Owen, C. Cur. Opin. Pharmacol. 2008, 8, 267.
7. (a) Marone, R.; Cmiljanovic, V.; Giese, B.; Wymann, M. P. Biochim. Biophys. Acta
Proteins Proteomics 2008, 1784, 159; (b) Shuttleworth, S. J.; Silva, F. A.; Cecil, A.
R. L.; Tomassi, C. D.; Hill, T. J.; Raynaud, F. I.; Clarke, P. A.; Workman, P. Curr.
Med. Chem. 2011, 18, 2687.
8. Shimada, M.; Murata, T.; Fuchikami, K.; Tsujishita, H.; Omori, N.; Kato, I.; Miura,
M.; Urbahns, K.; Gantner, F.; Bacon, K. WO 2004029055, 2004. See also
reference 18 which describes structural studies with PIK-90.
9. Hollick, J. J.; Rigoreau, L. J. M.; Cano-Soumillac, C.; Cockcroft, X.; Curtin, N. J.;
Frigerio, M.; Golding, B. T.; Guiard, S.; Hardcastle, I. R.; Hickson, I.;
Hummersone, M. G.; Menear, K. A.; Martin, N. M. B.; Matthews, I.; Newell, D.
R.; Ord, R.; Richardson, C. J.; Smith, G. C. M.; Griffin, R. J. J. Med. Chem. 1958,
2007, 50.
10. Camps, M.; Ruckle, T.; Ji, H.; Ardissone, V.; Rintelen, F.; Shaw, J.; Ferrandi, C.;
Chabert, C.; Gillieron, C.; Francon, B.; Martin, T.; Gretener, D.; Perrin, D.; Leroy,
D.; Vitte, P. A.; Hirsch, E.; Wymann, M. P.; Cirillo, R.; Schwartz, M. K.; Rommel,
C. Nat. Med. 2005, 11, 936.
carboxamide group makes favorable contacts with residues in
p110a .
, especially the non-conserved residue Gln859
Aminopropionic acid derivatives led to either delta or gamma
selective compounds depending on the exact nature of the substi-
tuent. For PI3Kd selectivity, screening aryl and heteroaryl amides
led to optimized fragment (B) which was used to provide
compounds 23 and 24. These were both low nM PI3Kd inhibitors
showing >30-fold selectivity over the other three class 1 iso-
forms.27 Moderately selective PI3K
c inhibitors were produced
from alkyl aminopropionic esters; maximum potency and selectiv-
ity was achieved when the t-butyl ester (C) was combined with
aminothiazole 6d to give 25.
To address the potential hydrolytic and metabolic instability of
25 a series of ester replacements was investigated. Fragments D
and E provided a favourable compromise between potency, selec-
tivity and PK profile, particularly when combined with aminothiaz-
oles 6d and 14 to give urea analogues 26 and 27.28,29 Both PI3K
c
11. Robertson, A. D.; Jackson, S.; Kenche, A.; Yaip, C.; Parbaharan, H.; Thompson, P.
WO 200153266, 2001.
12. Herman, S. E.; Gordon, A. L.; Wagner, A. J.; Heerema, N. A.; Zhao, W.; Flynn, J.
M.; Jones, J.; Andritsos, L.; Puri, K. D.; Lannutti, B. J.; Giese, N. A.; Zhang, X.; Wei,
L.; Byrd, J. C.; Johnson, A. J. Blood. 2010, 116, 2078.
13. (a) Chaisuparat, R.; Hu, J.; Jham, B. C.; Knight, Z. A.; Shokat, K. M.; Montaner, S.
Cancer Res. 2008, 68, 8361; (b) Rommel, C. Curr. Top. Microbiol. Immunol. 2010,
1, 279.
inhibitors showed good selectivity (>20 fold) against PI3K
a
although were somewhat less selective against the d and b iso-
forms. Interestingly no PI3Kb selective examples were identified
from this process. Molecular modeling and structural studies indi-
cated that d and
c isoform selectivity of compounds containing
fragments (B) and (C) is most likely derived from interactions be-
tween the terminal functional groups of the urea side chain and
non-conserved amino acids at the outer edge of the binding site.
These findings will be disclosed in due course.
14. The inhibitory activities of compounds against the recombinant PI3-kinase
enzymes were determined by using
a high throughput assay based on
Amersham Pharmacia Biotech’s Scintillation Proximity Assay (SPA) that
measures the transfer of the terminal phosphate of adenosine triphosphate
to phosphatidylinositol. Each well contains 10
dimethylsulphoxide and 20 l assay mix (40 mM Tris, 200 mM NaCl, 2 mM
ethyleneglycol-aminoethyl-tetraacetic acid (EGTA), 15 g/ml
phosphatidylinositol, 12.5 M adenosine triphosphate (ATP), 25 mM MgCl2
0.1
Ci [33P]ATP). The reaction is started by the addition of 20
(40 mM Tris, 200 mM NaCl, 2 mM EGTA containing recombinant GST-p110
ll test compound in 5%
Cellular assay data for selected examples is shown in Table 3.
l
The PI3K
cellular assays; this result is thought be accounted for by activity
against other isoforms (PI3K & PI3Kd) at higher concentrations.
a selective inhibitor 21 was moderately potent in all three
l
l
,
l
ll of enzyme mix
c
c
).
The PI3Kd selective inhibitor 24 was very potent in both mouse
and human B-cell proliferation (BCP) assays which correlates well
with the p110d binding data. The potent PI3Kc inhibitors 26 and 27
The plate is incubated at room temperature for 60 min and the reaction
terminated by the adding 150 l of WGA-bead stop solution (40 mM Tris,
200 mM NaCl, 2 mM EGTA, 1.3 mM ethylene diamine tetraacetic acid (EDTA),
2.6 M ATP and 0.5 mg of Wheat Germ Agglutinin–SPA beads (Amersham
l
l
showed good activity in the oxidative burst (fMLP) assay.
Compounds 21, 24, 26 and 27 were inactive against an in-house
panel of 20 protein kinases. In addition, 27 was also screened
against an external panel of 230 protein kinases and showed
minimal activity on all kinases in the panel with the exception of
two (CLK1, IC50 = 118 nM, and CLK2, IC50 = 117 nM); the functional
relevance of this is unclear. When screened against other members
of the PI3K superfamily no significant inhibition was observed
against mTOR, DNA-PK or Vps34 for the compounds in Table 3
although all showed activity in the PI4KIIIb assay.
The in vivo rat pharmacokinetic profiles for selected compounds
are shown in Table 4. The oral bioavailability (%F) of compound 24
was low as anticipated from its low aqueous solubility (<0.002 g/L
@ pH 6.8). By contrast, the other examples showed greater plasma
exposure.
Biosciences) to each well. The plate is sealed, incubated at room temperature
for 60 min, centrifuged at 1200 rpm and then counted for 1 min using a
scintillation counter. Total activity is determined by adding 10
dimethylsulphoxide (DMSO) and non-specific activity is determined by adding
10 l 50 mM EDTA in place of the test compound.
ll of 5%
l
15. Condliffe, A. M.; Davidson, K.; Anderson, K. E.; Ellson, C. D.; Crabbe, T.;
Okkenhaug, K.; Vanhaesebroeck, B.; Turner, M.; Webb, L.; Wymann, M. P.;
Hirsch, E.; Ruckle, T.; Camps, M.; Rommel, C.; Jackson, S. P.; Chilvers, E. R.;
Stephens, L. R.; Hawkins, P. T. Blood 2005, 106, 1432.
16. Julius, M. H.; Heusser, C. H.; Hartmann, K. H. Eur. J. Immunol 1984, 14, 753.
17. Walker, E. H.; Perisic, O.; Reid, C.; Stephens, L.; Williams, R. L. Nature 1999, 402,
313.
18. Knight, Z. A.; Gonzalez, B.; Feldman, M. E.; Zunder, E. R.; Goldenberg, D. D.;
Williams, O.; Loewith, R.; Stokoe, D.; Balla, A.; Toth, B.; Balla, T.; Weiss, W. A.;
Williams, R. L.; Shokat, K. M. Cell 2006, 125, 733.
19. Knight, Z. A.; Chiang, G. G.; Alaimo, P. J.; Kenski, D. M.; Ho, C. B.; Coan, K.;
Abraham, R. T.; Shokat, K. M. Bioorg. Med. Chem. 2004, 12, 4749.
20. Ulman, A.; Urankar, E. J. Org. Chem. 1989, 54, 4691.
21. Sargent, T., III; Shulgin, A. T.; Mathis, C. A. J. Med. Chem. 1984, 1071, 27.
22. King, L. C.; Hlavacek, R. J. J. Am. Chem. Soc. 1950, 72, 3722.
23. Ni, Z-J.; Pecchi, S.; Burger, M.; Han, W.; Smith, A.; Atallah, G.; Bartulis, S.;
Frazier, K.; Verhagen, J.; Zhang, Y.; Iwanowicz, E.; Hendrickson, T.; Knapp, M.;
Merritt, H.; Voliva, C.; Wiesmann, M.; Le Grand, D. M.; Bruce, I.; Dale, J.; Lan, J.;
Levine, B.; Costales, A.; Liu, J.; Pick, T.; Menezes, D. WO 2007095588, 2007.
In conclusion we have described progress towards isoform
selective PI3K inhibitors using an automated parallel synthesis
strategy. The compounds in Table 430 are pharmacological tools
exhibiting good isoform selectivity and cellular activity that should