C O M M U N I C A T I O N S
Scheme 4 a
a Conditions: (a) cat. Pd(Ph3)4, Tl2CO3, THF/H2O, room temp (79%); (b) 2, 2,4,6-Cl3BzCl, NEt3, DMAP, PhMe, room temp (69%); (c) PPTS, MeOH,
0 °C (95%); (d) PhI(OAc)2, TEMPO, CH2Cl2/H2O, room temp; (e) K2CO3, 18-crown-6, PhMe, 60 °C (70%, two steps); (f) TMSCl, Et3N, cat. DMAP,
CH2Cl2, room temp (91%); (g) (S)-CBS, BH3, THF, -40 °C (99%); (h) TBSOTf, 2,6-lutidine, CH2Cl2, -78 °C (94%); (i) (Bu3Sn)2O, PhMe, 80 °C (81%);
(j) (PhO)2P(O)N3, NEt3, benzene, room temp (92%); (k) benzene, reflux; (l) 2-Me-1-propenylmagnesium bromide, -78 °C (76%, two steps); (m) HF‚py, py,
THF, room temp (95%); (n) Cl3CC(O)NCO, CH2Cl2, 0 °C; Al2O3, room temp (95%); (o) TBAF, THF, 0 °C (41%).
Supporting Information Available: Experimental procedures and
characterization data for new compounds. This material is available
bromide to the isocyanate generated from heating acyl azide 21
yielded 22 (76%).
Selective trimethylsilyl ether deprotection enabled intro-
duction of the carbamate at C11 (23, 95%),18 an operation that was
followed by fluoride-mediated deprotection to afford target structure
1. Unfortunately, the NMR data obtained for 1 was incongruent
with those reported for the natural isolate, indicating that the relative
stereochemical assignment needed to be revisited.1
References
(1) Diyabalanage, T.; Amsler, C. D.; McClintock, J. B.; Baker, B. J. J. Am.
Chem. Soc. 2006, 128, 5630.
(2) For a review see: Yet, L. Chem. ReV. 2003, 103, 4283.
(3) Xie, X.-S.; Padron, D.; Liao, X.; Wang, J.; Roth, M. G.; De Brabander,
J. K. J. Biol. Chem. 2004, 279, 19755.
Confidence in the stereochemical assignment of synthetic 1 was
founded on (1) Mosher ester analysis of C7-alcohol 19,19 (2) C10,
C11 stereochemistry from D-arabitol, and (3) X-ray analysis of
fragment 7 (C19,20 stereochemistry).8 The natural absolute con-
figuration at C7 and C10 was ascertained by Mosher ester analysis.1
The relative C10-C11 and C19-C20 stereochemistry of natural
palmerolide A also seemed founded on solid footing, including
J-based H-H and C-H coupling constant analysis, and NOE-
difference spectroscopy.1 In contrast, we found the interpretation
of the ROESY data parlaying stereochemistry from C11 to C19
less convincing1 and decided to funnel our synthetic efforts toward
diastereomer 24. Its synthesis followed the chemistry outlined in
Scheme 4 but starting with the enantiomer of vinyl iodide 3,
ent-3.19
(4) For a description of the Antarctic Treaty, see the Antarctic Treaty
(5) Wu, Y.; Liao, X.; Wang, R.; Xie, X.-S.; De Brabander, J. K. J. Am. Chem.
Soc. 2002, 124, 3245.
(6) Shirokawa, S.-I.; Kamiyama, M.; Nakamura, T.; Okada, M.; Nakazaki,
A.; Hosokawa, S.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 13604.
(7) Marshall, J. A.; Eidam, P. Org. Lett. 2004, 6, 445.
(8) The absolute stereochemistry of 7 was confirmed by crystallographic
analysis, see the Supporting Information.
(9) Urbansky, M.; Davis, C. E.; Surjan, J. D.; Coates, R. M. Org. Lett. 2004,
6, 135 and references cited therein.
(10) (a) Wuts, P. G. M.; Thompson, P. A. J. Organomet. Chem. 1982, 234,
137. (b) Takai, K.; Shinomiya, N.; Kaihara, H.; Yoshida, N.; Moriwake,
T.; Utimoto, K. Synlett 1995, 963. (c) White, J. D.; Hanselmann, R.;
Jackson, R. W.; Porter, W. J.; Ohba, Y.; Tiller, T.; Wang, S. J. Org. Chem.
2001, 66, 5217.
(11) Evans, D. A.; Starr, J. T. J. Am. Chem. Soc. 2003, 125, 13531.
(12) Compound 2 was prepared in five steps from δ-valerolactone (see
Supporting Information).
Gratifyingly, the NMR spectra, TLC, and analytical HPLC
behavior of synthetic 24 and natural palmerolide A are indistin-
guishable.19 To our surprise however, the synthetic and natural
isolate were not completely indistinguishable by virtue of the mirror
image CD-spectra obtained for 24 and natural palmerolide A. The
inescapable conclusion is that the structure of (-)-palmerolide A
has to be revised to structure ent-24.20 Current efforts are underway
to produce the bioactive enantiomer of palmerolide and congeners.
(13) Inanaga, J.; Hirata, K.; Saeki, H.; Kastuki, T.; Yamaguchi, M. Bull. Chem.
Soc. Jpn. 1979, 52, 1989.
(14) De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. J.
Org. Chem. 1997, 62, 6974.
(15) (a) Stork, G.; Nakamura, E. J. Org. Chem. 1979, 44, 4010. (b) Nicolaou,
K. C.; Seitz, S. P.; Pavia, M. R.; Petasis, N. A. J. Org. Chem. 1979, 44,
4011. (c) Packard, G. K.; Hu, Y.; Vescovi, A.; Rychnovsky, S. D. Angew.
Chem., Int. Ed. 2004, 43, 2822.
(16) Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986.
(17) Mata, E. G.; Mascaretti, O. A. Tetrahedron Lett. 1988, 29, 6893.
(18) (a) Kocovsky, P. Tetrahedron Lett. 1986, 27, 5521. (b) Hung, D. T.;
Nerenberg, J. B.; Schreiber, S. L. J. Am. Chem. Soc. 1996, 118, 11054.
(19) See Supporting Information for details.
Acknowledgment. This work was supported by the NIH (Grant
CA90349), the Robert A. Welch Foundation, and Merck Research
Laboratories. We thank Dr. R. Akella for crystallographic analysis
and Prof. B. Baker for a sample of natural palmerolide and helpful
discussions regarding palmerolide stereochemistry.
(20) Prof. Baker informed us that their reported1 absolute stereochemical
assignment is in doubt because of erroneous Cahn-Ingold-Prelog
prioritization of their Mosher ester derivatives.
JA0715142
9
J. AM. CHEM. SOC. VOL. 129, NO. 20, 2007 6387