PAPER
First One-Pot Synthesis of Mikanecic Acid Derivatives from Allylic Phosphonates
285
Table 4 1H and 13C NMRa and MS Data of Compounds 5
Prod-
duct
1H NMR (CDCl3/TMS)
d, J (Hz)
13C{1H} NMR (CDCl3/TMS)
d, J (Hz)
MS (70 eV)
m/z (%)
5a
5b
5c
1.3 (m, 9 H, CH3CH2O), 3.7 (dd, J = 18.0, 14.8 (s, CH3CH2OC), 15.1 (d, J = 6.2, CH3CH2OP), 250 (M+, 11), 235 (94),
7.9, H, HC-1), 4.0–4.3 (m, H, 51.2 (d, J = 130.5, C-1), 61.5 (s, CH3CH2OC), 62.8, 205 (96), 204 (45), 177
CH3CH2O), 5.2–5.4 (m, 2 H, H2C-3), 5.9– 63.0 (2d, J = 7, 6.6, CH3CH2OP), 120.0 (d, J = 12.5, (73), 149 (100), 121 (83),
1
6
6.1 (m, 1 H, HC-2).
C-3), 128.0 (d, J = 11.3, C-2), 168.0 (d, J = 6.1, 81 (42), 68 (44), 39 (33).
C=O).
1.2–1.4 (m, 9 H, CH3CH2O), 1.75 (dd, J = 15.9–16.5 (m, CH3CH2OC, CH3CH2OP), 18.0 (d, J = 264 (M+, 4), 244 (3), 216
5.1, 4.8, 3 H, H3C–C-3), 3.7 (dd, J = 23.8, 2.5, H3C–C-3), 50.0 (d, J = 132.1, C-1), 63.0–64.0 (18), 191 (100), 177 (3),
7.9, 1 H, HC-1), 4.05–4.35 (m, 6 H, (m, CH3CH2OC and CH3CH2OP), 120.3 (d, J = 11.4, 163 (18), 135 (30), 99
CH3CH2O), 5.6–5.8 (m, 2 H, HC-2, HC-3).
C-2), 132.0 (d, J = 13.2, C-3), 170.0 (d, J = 4.6, (13), 81 (11), 53 (10), 39
C=O). (4).
1.25–1.4 (m, 9 H, CH3CH2O), 3.9 (dd, J = 13.0 (s, CH3CH2OC), 16.1 (d, J = 6.2, CH3CH2OP), 326 (M+, 26), 280 (15),
24.0, 9.5, 1 H, HC-1), 4.1–4.3 (m, 6 H, 50.1 (d, J = 130.5, C-1), 61.0 (s, CH3CH2OC), 62.8, 253 (19), 197 (27), 144
CH3CH2O), 6.35 (ddd, J = 15.9, 9.5, 6.2, 1 63.2 (2 d, J = 7.1, 6.8, CH3CH2OP), 118.2 (d, J = 9.0, (96), 115 (100), 81 (14),
H, HC-2), 6.6 (dd, J = 15.9, 4.9, 1 H, HC-3), C-2), 126.0, 127.7, 128.2 (3s, Co-, m-, p-arom), 134.2 (d, 65 (7), 40 (4).
7.2–7.5 (m, 5 H, Harom).
J = 13.0, C-3), 136.0 (s, Ci-arom), 167.0 (d, J = 5.8,
C=O).
5d
1.2–1.4 (m, 9 H, CH3CH2O), 1.7, 1.8 (2dm, 14.1 (s, CH3CH2OC), 16.2 (d, J = 6.1, CH3CH2OP), 278 (M+, 28), 232 (16),
J = 4.2, 3.7, 6 H, (H3C)2C-3), 3.95 (dd, J 18.2 and 25.9 (2d, J = 2.5, 3.1, (H3C)2C-3), 46.1 (d, J 205 (100), 177 (19), 149
= 23.9, 10.2, 1 H, HC-1), 4.15–4.3 (m, 6 H, = 132.7, C-1), 61.5 (s, CH3CH2OC), 62.8, 63.2 (2 d, (43), 138 (22), 111 (28),
CH3CH2O), 5.3–5.45 (m, 1 H, HC-2).
J = 7.2, 6.8, CH3CH2OP), 113.2 (d, J = 9.2, C-2), 67 (32), 39 (9).
138.0 (d, J = 13.1, C-3), 168.2 (d, J = 5.2, C=O).
a For numbering of the allylic carbon atoms, see Scheme 2.
(4) Loreto, M.; Pellacani, L.; Tardella, P. A. Gazz. Chim. Ital.
1990, 120, 379.
(18) Jung, M. E.; Zimmerman, C. N. J. Am. Chem. Soc. 1991, 113,
7813.
(5) Brannock, K. C.; Bell, A.; Burpitt, R. D.; Kelly, C. A. J. Org.
(19) Koop, U.; Handke, G.; Krause, N. Liebigs Ann. Chem. 1996,
1487.
Chem. 1964, 29, 801.
(6) McIntosh, J. M.; Sieler, R. A. J. Org. Chem. 1978, 43, 4431.
(7) Baraldi, P. G.; Barco, A.; Benetti, S.; Manfredini, S.; Pollini,
G. P.; Simoni, D.; Zanirato, V. Tetrahedron 1988, 44, 6451.
(8) Spino, C.; Crawford, J. Can. J. Chem. 1993, 71, 1094.
(9) Goldberg, O.; Dreiding, A. S. Helv. Chim. Acta 1976, 59,
1904.
(20) Al-Badri, H.; About-Jaudet, E.; Collignon, N. Synthesis 1994,
1072.
(21) Al-Badri, H.; About-Jaudet, E.; Combret, J.-C.; Collignon,
N. Synthesis 1995, 1401.
(22) Al-Badri, H.; About-Jaudet, E.; Collignon, N. J. Chem. Soc.,
Perkin Trans. 1 1996, 931.
(10) Hoffmann, H. M. R.; Rabe, J. Angew. Chem. 1983, 95, 795;
Angew. Chem., Int. Ed. Engl. 1983, 22, 795.
(23) Allylic phosphonates a-methyl esters analogs of 5 were pre-
viously described (31P and 1H NMR Data given); see: Yuan,
C.; Li, C. Heteroat. Chem. 1992, 3, 637.
(24) HWE reactions in presence of LiOH, in aqueous medium,
were recently reported; see: Mulzer, J.; Martin, H. J.; List, B.
Tetrahedron Lett. 1996, 37, 9177.
(25) Villieras, J.; Rambaud, M. Synthesis 1982, 924.
(26) Diastereomeric ratios varing from 5:1 to 10:1 have been
reported for the corresponding dimethyl esters (ref. 13).
(27) Chemical shift differences for carbons C-1 to C-6, between
compounds 1 (1b-major, 1b-minor and 1c in Table 2) and
the corresponding dimethyl esters (ref. 13) do not exceed
± 0.5 ppm.
(11) Hoffmann, H. M. R.; Rabe, J. Helv. Chim. Acta 1984, 67, 413.
(12) Hoffmann, H. M. R.; Eggert, U.; Poly, W. Angew. Chem.
1987, 99, 1047; Angew. Chem., Int. Ed. Engl. 1987, 26, 1015.
(13) Poly, W.; Schomburg, D.; Hoffmann, H. M. R. J. Org. Chem.
1988, 53, 3701.
(14) Basavaiah, D.; Pandiaraju, S.; Sarma, P. K. S. Tetrahedron
Lett. 1994, 35, 4227.
(15) Janse van Rensburg, D.; Mason, P. H.; Emslie, N. D. Synth.
Commun. 1996, 26, 4403.
(16) Alanine, A. I. D.; Fishwick, C. W. G.; Jones, A. D.; Mitchell,
M. B. Tetrahedron Lett. 1989, 30, 5653.
(17) Trifonov, L.S.; Orahovats, A. S.; Heimgartner, H. Helv. Chim.
Acta 1987, 70, 1070.
Synthesis 1999, No. 2, 282–285 ISSN 0039-7881 © Thieme Stuttgart · New York