ORGANIC
LETTERS
2007
Vol. 9, No. 11
2123-2126
An Approach to Skeletal Diversity
Using Functional Group Pairing of
Multifunctional Scaffolds
Eamon Comer,† Erin Rohan,† Li Deng,‡ and John A. Porco, Jr.*,†
Department of Chemistry and Center for Chemical Methodology and
Library DeVelopment, Boston UniVersity, 590 Commonwealth AVenue,
Boston, Massachusetts 02215, and Department of Chemistry, Brandeis UniVersity,
Waltham, Massachusetts 02454-9110
Received March 12, 2007
ABSTRACT
Diversification of enantioenriched Michael adducts through functional group pairing to gain access to a range of five- to ten-membered complex
fused and bridged ring systems is described.
Diversity-oriented synthesis (DOS) involves preparation of
structurally diverse collections of compounds with the aim
of discovering small molecule protein modulators.1a-e To
further develop this strategy, methodologies that allow for
the preparation of enantioenriched compounds with high
levels of skeletal diversity are needed.1b Synthetic approaches
toward this goal have successfully explored skeletal
rearrangement,1i convergent synthesis,1f,g “folding” processes,1h
and linear sequences.1j We sought to address this overall
objective through synthetic approaches involving selective
pairing of two functional groups of interest strategically
placed on multifunctional, enantioenriched scaffolds.2 Skel-
etal diversity may be achieved by chemoselective activation
of different pairs of functional groups in transformations of
interest. Similar use of multifunctional enyne scaffolds has
recently been reported by Schreiber and co-workers.2b
Our overall strategy is outlined in Figure 1. Deng and co-
workers recently demonstrated that readily available, modi-
fied Cinchona alkaloids are effective catalysts for enantio-
selective Michael addition of 2-substituted 1,3-ketoesters to
â-nitrostyrenes.3 We envisioned that expansion of this
methodology would permit access to highly functionalized
modular scaffolds4 (cf. 1, Figure 1) suitable for functional
group pairing studies and overall investigation of their
† Boston University.
‡ Brandeis University.
(1) For reviews and seminal papers on diversity-oriented synthesis see:
(a) Schreiber, S. L. Science 2000, 287, 1964-1969. (b) Burke, M. D.;
Berger, E. M.; Schreiber, S. L. Science 2003, 302, 613-618. (c) Spring,
D. R. Org. Biomol. Chem. 2003, 1, 3867-3870. (d) Burke, M. D.; Schreiber,
S. L. Angew. Chem., Int. Ed. 2004, 43, 46-58. (e) Arya, P.; Joseph, R.;
Gan, Z.; Rakic, B. Chem. Biol. 2005, 12, 163-180. For recent approaches
to diversity-oriented synthesis see: (f) Shun, S.; Acquilano, D. E.;
Arumugasamy, J.; Beeler, A. B.; Eastwood, E. L.; Giguere, J. R.; Lan, P.;
Lei, X.; Min, G. K.; Yeager, A. R.; Zhou, Y.; Panek, J. S.; Snyder, J. K.;
Schaus, S. E.; Porco, J. A., Jr. Org. Lett. 2005, 7, 2751-2754. (g) Chen,
C.; Li, X.; Neumann, C. S.; Lo, M. M.-C.; Schreiber, S. L. Angew. Chem.,
Int. Ed. 2005, 44, 2249-2252. (h) Spiegel, D. A.; Schroeder, F. C.; Duvall,
J. R.; Schreiber, S. L. J. Am. Chem. Soc. 2006, 128, 14766-14767. (i)
Yeager, A. R.; Min, G. K.; Porco, J. A., Jr.; Schaus, S. E. Org. Lett. 2006,
8, 5065-5068. (j) Mitchell, J. M.; Shaw, J. T. Angew. Chem., Int. Ed. 2006,
45, 1722-1726.
(2) (a) Couladouros, E. A.; Strongilos, A. T. Angew. Chem., Int. Ed.
2002, 41, 3677-3680. (b) Kumagai, N.; Muncipinto, G.; Schreiber, S. L.
Angew. Chem., Int. Ed. 2006, 45, 3635-3638.
(3) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B.
M.; Deng, L. Angew. Chem., Int. Ed. 2005, 44, 105-108.
(4) For related chiral, racemic scaffolds, see: Guillaume, M.; Dumez,
E.; Rodriguez, J.; Dulce`re, J.-P. Synlett 2002, 11, 1883-1885.
10.1021/ol070606t CCC: $37.00
© 2007 American Chemical Society
Published on Web 05/02/2007