LETTER
Synthesis of Functionalized Spiroheterocycles
1041
O
CO2Me
CO2Me
N
O
O
PhH, reflux
93%
7a
N
CO2Me
O
8
+
CO2Me
Scheme 3 Diels–Alder reaction on spirolactam 7a
(11) (a) Sannigrahi, M. Tetrahedron 1999, 55, 9007. (b) Martin,
J. D. In Studies in Natural Products Chemistry, Vol. 6;
Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1990, 59.
(c) El Bialy, S. A. A.; Braun, H.; Tietze, L. F. Synthesis
2004, 2249.
(12) Takada, N.; Umemura, N.; Suenaga, K.; Chou, T.; Nagatsu,
A.; Haino, T.; Yamada, K.; Uemura, D. Tetrahedron Lett.
2001, 42, 3491.
(13) Takada, N.; Umemura, N.; Suenaga, K.; Uemura, D.
Tetrahedron Lett. 2001, 42, 3495.
(14) (a) See ref. 10b. (b) Charonnet, E.; Filippini, M. H.;
Rodriguez, J. Synthesis 2001, 788.
(15) General Procedure for MCRs: To a solution of ketoester or
ketoamide 1 (1 mmol) and DBU (3 mmol) in appropriate
solvent (4 mL, Table 1) was added the corresponding
aldehyde 2 (1.1 mmol) and halide 3 (2 mmol). The resulting
solution was stirred for the indicated time and at the
indicated temperature (Table 1). After completion of the
reaction and evaporation of most of the solvent under
reduced pressure, 1 N solution of HCl (30 mL) was added to
the oily residue. Extraction with Et2O (3 × 40 mL) followed
by successive washing with distilled H2O (2 × 20 mL) and
brine (20 mL) gave, after drying (MgSO4) and evaporation
of the solvent, the crude compounds which were purified by
flash chromatography on silica gel.
References and Notes
(1) (a) For a recent monograph, see: Multicomponent
Reactions; Zhu, J.; Bienaymé, H., Eds.; Wiley-VCH:
Weinheim, 2005. For some recent reviews on MCRs, see:
(b) Dömling, A. Chem. Rev. 2006, 106, 17; and references
cited therein. (c) Bienaymé, H.; Hulme, C.; Oddon, G.;
Schmitt, P. Chem. Eur. J. 2000, 6, 3321. (d) Dömling, A.;
Ugi, I. Angew. Chem. Int. Ed. 2000, 39, 3168. (e) Zhu, J.
Eur. J. Org. Chem. 2003, 1133. (f) Orru, R. V.; de Greef, M.
Synthesis 2003, 1471. (g) Ramon, D. J.; Yus, M. Angew.
Chem. Int. Ed. 2005, 44, 1602. For representative reviews,
see: (h) Tietze, L. F. Chem. Rev. 1996, 96, 115. (i) Tietze,
L. F.; Lieb, M. E. Curr. Opin. Chem. Biol. 1998, 2, 363.
(j) Rodriguez, J. Synlett 1999, 505. (k) Tietze, L. F.;
Brasche, G.; Gericke, K. Domino Reactions in Organic
Synthesis; Wiley-VCH: Weinheim, 2006.
(2) Weber, L.; Illgen, M.; Almstetter, M. Synlett 1999, 366.
(3) Schreiber, S. L. Science 2000, 287, 1964.
(4) (a) Trost, B. M. Science 1991, 254, 1471. (b) Trost, B. M.
Angew. Chem. Int. Ed. 1995, 34, 258. (c) Trost, B. M. Acc.
Chem. Res. 2002, 35, 695.
(5) (a) Wender, P. A.; Bi, F. C.; Gamber, G. G.; Gosselin, F.;
Hubbard, R. D.; Scanio, M. J. C.; Sun, R.; Williams, T. J.;
Zhang, L. Pure Appl. Chem. 2002, 74, 25. (b) Wender, P.
A.; Baryza, J. L.; Brenner, S. E.; Clarke, M. O.; Gamber, G.
G.; Horan, J. C.; Jessop, T. C.; Kan, C.; Pattabiraman, K.;
Williams, T. J. Pure Appl. Chem. 2003, 75, 143.
(c) Wender, P. A.; Baryza, J. L.; Brenner, S. E.; Clarke, M.
O.; Craske, M. L.; Horan, J. C.; Meyer, T. Curr. Drug
Discov. Technol. 2004, 1, 1. (d) Wender, P. A.; Gamber, G.
G.; Hubbard, R. D.; Pham, S. M.; Zhang, L. J. Am. Chem.
Soc. 2005, 127, 2836.
(6) For a special issue in environmental chemistry, see:
Grissom, C. B. Chem. Rev. 1995, 95, 3.
(7) Wender, P. A.; Handy, S. T.; Wright, D. L. Chem. Ind.
(London) 1997, 765.
(8) (a) See refs 1a and 1b. (b) Gracias, V.; Gasiecki, A. F.;
Djuric, S. W. Org. Lett. 2005, 7, 3183.
(9) For recent reviews, see: (a) Simon C., Constantieux T.,
Rodriguez J.; Eur. J. Org. Chem.; 2004, 4957.
Physical Data for Compound 4b: yellow oil; Rf [Et2O–PE
(50:50)] 0.79. IR (liquid film): 2942, 1740, 1678, 1588,
1472, 1208, 1133, 927 cm–1. MS: m/z (%) = 305 (100) [M +
H+], 264 (13), 247 (36), 219 (12), 206 (8). 1H NMR (300.13
MHz, CDCl3): d = 7.50 (d, J = 1.5 Hz, 1 H), 7.35 (s, 1 H),
6.72 (d, J = 3.5 Hz, 1 H), 6.53 (dd, J = 1.5, 3.5 Hz, 1 H),
5.65–5.92 (m, 2 H), 5.13–5.32 (m, 4 H), 4.63 (dd, J = 1.0, 5.6
Hz, 2 H), 3.71 (d, J = 11.2 Hz, 1 H), 3.15 (d, J = 11.2 Hz, 1
H), 2.84 (dd, J = 7.1, 13.8 Hz, 1 H), 2.58 (dd, J = 7.6, 13.8
Hz, 1 H). 13C NMR (75.47 MHz, CDCl3): d = 197.3, 168.9,
151.6, 144.7, 131.3, 132.0, 128.2, 118.8, 115.9, 120.1,
112.9, 115.5, 66.6, 60.4, 38.6, 32.7.
(16) (a) Fürstner, A.; Langemann, K. J. Am. Chem. Soc. 1997,
119, 9130. (b) Cossy, J.; Bauer, D.; Bellosta, V.
Tetrahedron Lett. 1999, 40, 4187. (c) Ghosh, A. K.;
Cappiello, J.; Shin, D. Tetrahedron Lett. 1998, 39, 4651.
(d) Fürstner, A.; Langemann, K. J. Am. Chem. Soc. 1997,
119, 9130.
(b) Constantieux, T.; Rodriguez, J. In Targets in
Heterocyclic Systems, Vol 9; Attanasi, O. A.; Spinelli, D.,
Eds.; Società Chimica Italiana: Rome, 2005. (c) Liéby-
Muller, F.; Simon, C.; Constantieux, T.; Rodriguez, J. QSAR
Comb. Sci. 2006, 25, 432.
(17) General Procedure for RCMs: To a 6 × 10–3 M solution of
spiroheterocyclic precursors 4a–e in anhyd CH2Cl2, under
an atmosphere of argon, Grubbs’ catalyst 5b was introduced
in several portions of 2% every 2 h. The mixture was stirred
at reflux and completion of reaction was checked by TLC.
The mixture was filtered through a pad of silica gel and celite
and the crude material was purified by flash chromatography
on silica gel.
(10) (a) Liéby-Muller, F.; Simon, C.; Imhof, K.; Constantieux,
T.; Rodriguez, J. Synlett 2006, 1671. (b) Liéby-Muller, F.;
Constantieux, T.; Rodriguez, J. J. Am. Chem. Soc. 2005, 127,
17176. (c) Habib-Zahmani, H.; Hacini, S.; Charonnet, E.;
Rodriguez, J. Synlett 2002, 1827.
Synlett 2007, No. 7, 1037–1042 © Thieme Stuttgart · New York