262
J.-L. Zheng et al. / Tetrahedron: Asymmetry 22 (2011) 257–263
KBr pellet techniques. 1H NMR spectra were recorded in CDCl3 on a
Bruker 400 spectrometer with tetramethylsilane as an internal
standard. Chemical shifts are expressed in d (ppm) units downfield
from TMS. Mass spectra were recorded by a Bruker Dalton ESquire
3000 plus liquid chromatography-mass spectrum (direct injec-
tion). Optical rotations were measured with a Perkin–Elmer 341
automatic polarimeter. Flash column chromatography was carried
out with silica gel (300–400 mesh). THF was distilled over sodium
benzophenone ketyl under N2.
(ddd, J = 8.8, 5.4, 3.2 Hz, 1H, H-5), 3.62 (br s, 3H, PhCH2 and OH),
4.30 (dddd, J = 10.0, 7.8, 5.4, 2.4 Hz, 1H, H-3), 7.21–7.35 (m, 5H,
PhH) ppm; 13C NMR (100 MHz, CDCl3): d 34.6, 52.6, 60.0, 62.8,
69.6, 126.9, 128.3, 128.7, 139.4 ppm. HRMS calcd for
[C11H16NO+H+]: 178.1232; found: 178.1233.
Acknowledgments
The authors are grateful to the NSF of China (20832005),
NFFTBS (No. J1030415) and the National Basic Research Program
(973 Program) of China (Grant No. 2010CB833200) for financial
support.
4.2. Typical procedure for the one-pot synthesis of cyclic imides
from a-hydroxydiacids: synthesis of (S)-3-hydroxy-N-(4-
methoxybenzyl) pyrrolidine-2,5-dione (S)-1b
References
To a two-necked round bottom flask equipped with a Dean–
Stark apparatus were added successively L-malic acid (1.86 g,
1. (a) Coppola, G. M.; Schuster, H. a-Hydroxyacids in Synthesis; Wiley-VCH, Inc.:
13.9 mmol), 4-methoxybenzylamine (2.18 mL, 16.7 mmol), and
xylene (100 mL). The mixture was heated at reflux for 8 h. The
reaction was cooled to ice-bath temperature and the precipitate
formed was filtered. The solid was washed three times with petro-
leum ether and subjected to flash chromatography on silica gel
eluting with ethyl acetate/petroleum ether (2:1) to give (S)-1b
(3.01 g, yield: 92%) as a white solid. The ee of this product was
determined to be 99.2% (vide supra). Mp 114.5–115.5 °C (lit.10a
New York, 1997; (b) Gawronski, J.; Gawronska, K. Tartaric and Malic Acids in
Synthesis; John Wiley & Sons, Inc.: New York, 1999; (c) Ghosh, A. K.; Koltum, E.
S.; Blicer, G. Synthesis 2001, 1281–1301; (d) Huang, P.-Q. Synlett 2006, 1133–
1149.
2. (a) Nemia, M. M. B.; Lee, J.; Joullié, M. M. Synth. Commun. 1983, 13, 1117–1123;
(b) Bhat, K. L.; Flanagan, D. M.; Joullié, M. M. Synth. Commun. 1985, 15, 587–
598.
3. Nagel, U.; Nedden, H. G. Chem. Ber. Recl. 1997, 130, 385–397.
4. Malimides: (a) Poll, T.; Hady, A. F. A.; Karge, R.; Linz, G.; Weetman, J.;
Helmchen, G. Tetrahedron Lett. 1989, 30, 5595–5598; (b) Linz, G.; Weetman, J.;
Hady, A. F. A.; Helmchen, G. Tetrahedron Lett. 1989, 30, 5599–5602; (c) Lee, Y.
S.; Kang, D. W.; Lee, S. J.; Park, H. J. Org. Chem. 1995, 60, 7149–7152; (d)
Lowden, P. A. S.; Böhm, G. A.; Staunton, J.; Leadlay, P. F. Angew. Chem., Int. Ed.
1996, 35, 2249–2251; (e) Murahashi, S.-I.; Ohtake, H.; Imada, Y. Tetrahedron
Lett. 1998, 39, 2765–2766; (f) Lee, Y. S.; Min, B. J.; Park, Y. K.; Lee, J. Y.; Lee, S. J.;
mp 114.5–115.5 °C);
½
a 2D0
ꢁ
¼ ꢀ67:5 (c 0.9, CHCl3) {lit.10a,b
½
a 2D0
ꢁ
¼ ꢀ65:4 (c 0.52, CHCl3)}. The spectroscopic data are in agree-
ment with those reported in the literature.10a
ˇ
Park, H. Tetrahedron Lett. 1999, 40, 5569–5572; (g) Kocalka, P.; Pohl, R.; Rejman,
D.; Rosenberg, I. Tetrahedron 2006, 62, 5763–5774.
4.3. (3S,4S)-3,4-Dihydroxy-1-(4-methoxybenzyl)pyrrolidine-2,5-
dione (S,S)-2b
5. Tartarimides: (a) Nagel, U.; Kinzel, E.; Andrade, J.; Prescher, G. Chem. Ber. 1986,
119, 3326–3343; (b) Arakawa, Y.; Yoshifuji, S. Chem. Pharm. Bull. 1991, 39,
2219–2224; (c) Ballini, R.; Marcantoni, E.; Petrini, M. J. Org. Chem. 1992, 57,
1316–1318; (d) Cicchi, S.; Höld, I.; Brandi, A. J. Org. Chem. 1993, 58, 5274–5275;
(e) Ryu, Y.; Kim, G. J. Org. Chem. 1995, 60, 103–108; (f) Lee, J. Y.; Lee, Y. S.;
Chung, B. Y.; Park, H. Tetrahedron 1997, 53, 2449–2458.
6. Malimides: (a) Chamberlin, A. R.; Chung, J. Y. L. J. Am. Chem. Soc. 1983, 105,
3653–3656; (b) Niwa, H.; Miyachi, Y.; Okamoto, O.; Uosaki, Y.; Yamada, K.
Tetrahedron Lett. 1986, 27, 4605–4608; (c) Niwa, H.; Okamoto, O.; Miyachi, Y.;
Uosaki, Y.; Yamada, K. J. Org. Chem. 1987, 52, 2941–2943; (d) Klaver, W. J.;
Hiemstra, H.; Speckamp, W. N. J. Am. Chem. Soc. 1989, 111, 2588–2595; (e)
Niwa, H.; Miyachi, Y.; Okamoto, O.; Uosaki, Y.; Kuroda, A.; Ishiwata, H.;
Yamada, K. Tetrahedron 1992, 48, 393–412; (f) Leeper, F. J.; Howard, S.
Tetrahedron Lett. 1995, 36, 2335–2338; (g) Hart, D. J.; Sun, L.-Q.; Kozikowski, A.
P. Tetrahedron Lett. 1995, 36, 7787–7790; (h) Louwrier, S.; Ostendorf, M.; Boom,
A.; Hiemstra, H.; Speckamp, W. N. Tetrahedron 1996, 52, 2603–2628; (i) Huang,
P.-Q.; Wang, S.-L.; Ye, J.-L.; Ruan, Y.-P.; Huang, Y.-Q.; Zheng, H.; Gao, J.-X.
Tetrahedron 1998, 54, 12547–12560; (j) Marson, C. M.; Pink, J. H.; Hall, D. J. Org.
Chem. 2003, 68, 792–798.
Following the typical procedure, reaction of D-tartaric acid gave
(S,S)-2b as white crystals in 91% yield after recrystallization from
water. The ee of this product was determined to be 99.0% (vide su-
pra). Mp 185–187 °C (H2O). ½a D20
¼ ꢀ97:4 (c 0.5, MeOH); IR (neat)
ꢁ
3286, 2962, 1710, 1692, 1612, 1515, 1432, 1384, 1352, 1289,
1260, 1161, 1094, 1026 cmꢀ1 1H NMR (400 MHz, DMSO-d6) d
;
3.72 (s, 3H, OMe), 4.31–4.37 (m, 2H, OCH), 4.46 (d, J = 14.6 Hz,
1H, NCH2), 4.52 (d, J = 14.6 Hz, 1H, NCH2), 6.22–6.32 (m, 2H, OH),
6.88 (d, J = 8.6 Hz, 2H, Ar-H), 7.19 (d, J = 8.6 Hz, 2H, ArH) ppm;
13C NMR (400 MHz, DMSO-d6): d 41.15, 55.56, 74.96, 114.38,
128.50, 129.65, 159.16, 174.96 ppm; HRESIMS calcd for
[C12H13NO5+H+]: 252.0866; found: 252.0868.
7. Tartarimides: (a) Dener, J. M.; Hart, D. J.; Ramesh, S. J. Org. Chem. 1988, 53,
6022–6030; (b) Yoda, H.; Shirakawa, K.; Takabe, K. Tetrahedron Lett. 1991, 32,
3401–3404; (c) Yoda, H.; Shimojo, T.; Takabe, K. Tetrahedron Lett. 1999, 40,
1335–1336; (d) Ha, D.-C.; Yun, C.-S.; Lee, Y. J. Org. Chem. 2000, 65, 621–623; (e)
Schuch, C. M.; Pilli, R. A. Tetrahedron: Asymmetry 2000, 11, 753–764; (f) Klitzke,
C. F.; Pilli, R. A. Tetrahedron Lett. 2001, 42, 5605–5608; (g) Gonzalez, S. V.;
Carlsen, P. Eur. J. Org. Chem. 2007, 3495–3502; (h) Vieira, A. S.; Ferreira, F. P.;
Fiorante, P. F.; Guadagnin, R. C.; Stefani, H. A. Tetrahedron 2008, 64, 3306–3314.
8. For a review on the synthesis of 3-pyrrolidinol, see: Flanagan, D. M.; Joullié, M.
M. Heterocycles 1987, 26, 2247–2264.
9. For selected examples, see: (a) Tamazawa, K.; Arima, H.; Kojima, T.; Isomura,
Y.; Okada, M.; Fujita, S.; Furuya, T.; Takenaka, T.; Inagaki, O.; Terai, M. J. Med.
Chem. 1986, 29, 2504–2511; (b) Naylor, A.; Judd, D. B.; Scopes, D. I. C.; Hayes, A.
G.; Birch, P. J. J. Med. Chem. 1994, 37, 2138–2144; (c) Macor, J. E.; Ordway, T.;
Smith, R. L.; Verhoest, P. R.; Mack, R. A. J. Org. Chem. 1996, 61, 3228–3229; (d)
Kehr, C.; Neidlein, R.; Engh, R. A.; Brandstetter, H.; Kucznierz, R.; Leinert, H.;
Marzenell, K.; Stein, K.; von der Saal, W. Helv. Chim. Acta 1997, 80, 892–896; (e)
Li, Z.; Feiten, H.-J.; Chang, D.; Duetz, W. A.; van Beilen, J. B.; Witholt, B. J. Org.
Chem. 2001, 66, 8424–8430.
10. For selected examples, see: (a) Huang, P.-Q.; Chen, Q.-F.; Chen, C.-L.; Zhang, H.-
K. Tetrahedron: Asymmetry 1999, 10, 3827–3832; Huang, P.-Q.; Chen, Q.-F.;
Chen, C.-L.; Zhang, H.-K. Tetrahedron: Asymmetry 2000, 11, 1843; (c) Zhou, X.;
Huang, P.-Q. Synlett 2006, 1235–1239; (d) Zhou, X.; Liu, W.-J.; Ye, J.-L.; Huang,
P.-Q. Tetrahedron 2007, 63, 6346–6357; (e) Xiang, S.-H.; Yuan, H.-Q.; Huang, P.-
Q. Tetrahedron: Asymmetry 2009, 20, 2021–2026; (f) Liu, W.-J.; Ye, J.-L.; Huang,
P.-Q. Org. Biomol. Chem. 2010, 8, 2085–2091; (g) Ye, Z.-B.; Chen, J.; Meng, W.-
H.; Huang, P.-Q. Tetrahedron: Asymmetry 2010, 21, 895–902.
4.4. (S)-N-Benzylpyrrolidin-3-ol 5
To a cooled (ꢀ15 °C) suspension of lithium aluminum hydride
(152 mg, 4 mmol) in THF (5 mL) was added dropwise a solution
of N-benzyl-3-hydroxysuccinimide (205 mg, 1 mmol) in dry THF
(5 mL). The mixture was allowed to warm to rt and stirred for
4 h. The reaction was quenched by the successive addition of
0.2 mL of H2O, 0.2 mL of 4 M aqueous NaOH, and 0.6 mL of H2O
at 0 °C. The solid was filtered and washed with CH2Cl2
(5 ꢂ 5 mL). The combined organic layers were dried over anhy-
drous MgSO4, filtered, and concentrated under reduced pressure.
The residue was purified by flash chromatography on silica gel
(eluent: CH2Cl2/MeOH 10: 1) to afford compound 5 (94 mg, yield:
53%) as a pale yellow oil. The ee of this product was determined to
be 98.5% (vide supra).
½
a 2D5
ꢁ
¼ ꢀ5:3 (c 1.0, CHCl3)] {lit.14
½
a 2D5
ꢁ
¼ ꢀ3:145 (c 1.2, CHCl3) for 5 with ca. 100% ee); lit.2b
½
a 2D5
ꢁ
¼ ꢀ2:47 (c 1.175, CHCl3) for 5 with 84% ee)}; IR (neat):
3373, 3067, 3028, 2955, 2925, 2848, 1665, 1453, 1378, 1261,
1211, 1083, 1028 cmꢀ1 1H NMR (400 MHz, CDCl3): d 1.71 (dddd,
.
J = 8.5, 7.8, 6.4, 3.2 Hz, 1H, H-4), 2.17 (dddd, J = 8.5, 10.0, 5.4,
2.5 Hz, 1H, H-4), 2.35 (ddd, J = 8.8, 6.4, 2.5 Hz, 1H, H-5), 2.58 (dd,
J = 10.2, 5.4 Hz, 1H, H-2), 2.64 (dd, J = 10.2, 2.4 Hz, 1H, H-2), 2.83
11. (a) Wong, C. M.; Buccini, J.; Raa, J. T. Can. J. Chem. 1968, 46, 3091–3094; (b)
Wijnberg, B. P.; Speckamp, W. N. Tetrahedron Lett. 1980, 21, 1987–1990; (c)