Communications
[8] I. Paterson, D. Y. Chen, J. L. Aceꢀa, A. S. Franklin, Org. Lett.
2000, 2, 1513 – 1516.
Cu-, and Ru-based NHC complexes; it demonstrates the
utility of enantioselective (NHC)Ru-catalyzed olefin meta-
thesis and expands that of (NHC)Cu-catalyzed allylic alky-
lations.[26]
[9] a) C. A. Falciola, K. Tissot-Croset, A. Alexakis, Angew. Chem.
2006, 118, 6141 – 6144; Angew. Chem. Int. Ed. 2006, 45, 5995 –
5998; for reactions of activated substrates, see: b) P. J. Gold-
smith, S. J. Teat, S. Woodward, Angew. Chem. 2005, 117, 2275 –
2277; Angew. Chem. Int. Ed. 2005, 44, 2235 – 2237.
[10] For use of trialkylaluminum reagents in Cu-catalyzed asymmet-
ric conjugate additions, see: M. dꢁAugustin, L. Palais, A.
Alexakis, Angew. Chem. 2005, 117, 1400 – 1402; Angew. Chem.
Int. Ed. 2005, 44, 1376 – 1378.
[11] M. K. Brown, T. L. May, C. A. Baxter, A. H. Hoveyda, Angew.
Chem. 2007, 119, 1115 – 1118; Angew. Chem. Int. Ed. 2007, 46,
1097 – 1100.
[12] E. Vedejs, M. Jure, Angew. Chem. 2005, 117, 4040 – 4069; Angew.
Chem. Int. Ed. 2005, 44, 3974 – 4001.
Received: February 4, 2007
Published online: April 5, 2007
Keywords: allylic alkylation · asymmetric catalysis ·
.
natural products · N-heterocyclic carbenes · olefin metathesis
[1] For a general discussion of natural product synthesis and
asymmetric catalysis, see: A. H. Hoveyda, Stimulating Concepts
in Chemistry (Eds: F. Vögtle, J. F. Stoddart, M. Shibasaki),
Wiley-VCH, Weinheim, 2000, pp. 145 – 162.
[13] Preliminary studies indicated that a benzyl ether gives rise to
side products during AAA; the alcohol was therefore masked as
an allyl ether.
[14] See the Supporting Information for full experimental details
involving synthesis of 13.
[2] D. C. Manker, D. J. Faulkner, T. J. Stout, J. Clardy, J. Org. Chem.
1989, 54, 5371 – 5374.
[3] For a review on asymmetric olefin metathesis, see: a) A. H.
Hoveyda, Handbook of Metathesis, Vol. 2 (Ed.: R. H. Grubbs),
VCH-Wiley, Weinheim, 2003, pp. 128 – 150; for previous reports
on Ru-catalyzed asymmetric olefin metathesis, see: b) T. J.
Seiders, D. W. Ward, R. H. Grubbs, Org. Lett. 2001, 3, 3225 –
3228; c) J. J. Van Veldhuizen, J. S. Kingsbury, S. B. Garber, A. H.
Hoveyda, J. Am. Chem. Soc. 2002, 124, 4954 – 4955; d) J. J. Van
Veldhuizen, D. G. Gillingham, S. B. Garber, O. Kataoka, A. H.
Hoveyda, J. Am. Chem. Soc. 2003, 125, 12502 – 12508; e) D. G.
Gillingham, O. Kataoka, S. B. Garber, A. H. Hoveyda, J. Am.
Chem. Soc. 2004, 126, 12288 – 12290; f) J. J. Van Veldhuizen,
J. E. Campbell, R. E. Giudici, A. H. Hoveyda, J. Am. Chem. Soc.
2005, 127, 6877 – 6882; g) T. W. Funk, J. M. Berlin, R. H. Grubbs,
J. Am. Chem. Soc. 2006, 128, 1840 – 1846; h) J. M. Berlin, S. D.
Goldberg, R. H. Grubbs, Angew. Chem. 2006, 118, 7753 – 7757;
Angew. Chem. Int. Ed. 2006, 45, 7591 – 7595; i) R. E. Giudici,
A. H. Hoveyda, J. Am. Chem. Soc. 2007, in press.
[4] For applications of Mo-catalyzed asymmetric olefin metathesis
in natural product synthesis, see: a) S. D. Burke, N. Muller, C. M.
Beudry, Org. Lett. 1999, 1, 9720 – 9721; b) G. S. Weatherhead,
G. A. Cortez, R. R. Schrock, A. H. Hoveyda, Proc. Natl. Acad.
Sci. USA 2004, 101, 5805 – 5809; for a review of applications of
catalytic olefin metathesis in natural product synthesis, see:
c) K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. 2005,
117, 4564 – 4601; Angew. Chem. Int. Ed. 2005, 44, 4490 – 4527.
[5] For an overview of recent advances in catalytic asymmetric
allylic alkylation reactions, see: H. Yorimitsu, K. Oshima,
Angew. Chem. 2005, 117, 4509 – 4513; Angew. Chem. Int. Ed.
2005, 44, 4435 – 4439.
[15] H. Ito, T. Taguchi, Y. Hanazawa, J. Org. Chem. 1993, 58, 774 –
775.
[16] Chiral Mo catalysts (R. R. Schrock, A. H. Hoveyda, Angew.
Chem. 2003, 115, 4740 – 4782; Angew. Chem. Int. Ed. 2003, 42,
4592 – 4633) provide 19 with lower enantiomeric purity
(ꢀ67% ee).
[17] Prolonged reaction times led to the formation of the acyclic diol
as the exclusive product.
[18] a) S. J. Connon, S. Blechert, Angew. Chem. 2003, 115, 1944 –
1968; Angew. Chem. Int. Ed. 2003, 42, 1900 – 1923; b) A. K.
Chatterjee, T.-L. Choi, D. P. Sanders, R. H. Grubbs, J. Am.
Chem. Soc. 2003, 125, 11360 – 11370.
[19] Similar observations were made when pyran 21 was used as the
substrate.
[20] a) P. A. Evans, J. Cui, S. J. Gharpure, A. Polosukhin, H. Zhang, J.
Am. Chem. Soc. 2003, 125, 14702 – 14703; b) T. R. Hoye, B. M.
Elkov, J. Jeon, M. Khoroosi, Org. Lett. 2006, 8, 3383 – 3386.
[21] S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am.
Chem. Soc. 2000, 122, 8168 – 8179.
[22] Lower amounts of CuCN (e.g., 20 mol%) led to the formation of
substantial amounts of dihydrofuran by-product derived from
phosphate displacement by the secondary allylic alcohol. With
1.5 equiv CuCN, about 10% of this by-product is generated.
[23] Previously reported methods for synthesis of g-pyrones through
triketone cyclizations proved to be inefficient; see: a) H.
Arimoto, S. Nishiyama, S. Yamamura, Tetrahedron Lett. 1990,
31, 5619 – 5620; b) T. Lister, M. V. Perkins, Angew. Chem. 2006,
118, 2622 – 2626; Angew. Chem. Int. Ed. 2006, 45, 2560 – 2564.
[24] K. A. Scheidt, H. Chen, B. C. Follows, S. R. Chemler, D. Coffey,
W. R. Roush, J. Org. Chem. 1998, 63, 6436 – 6437.
[25] Alternative protocols (e.g., aqueous HOAc, nBu4NF) led to low
yields owing to decomposition of starting material and/or
product.
[6] For catalytic AAA reactions promoted by chiral NHC-based
complexes, see: a) A. O. Larsen, W. Leu, C. Nieto-Oberhuber,
J. E. Campbell, A. H. Hoveyda, J. Am. Chem. Soc. 2004, 126,
11130 – 11131; b) S. Tominaga, Y. Oi, T. Kato, D. K. An, S.
Okamoto, Tetrahedron Lett. 2004, 45, 5585 – 5588; c) referen-
ce [2f]; d) S. Okamoto, S. Tominaga, N. Saino, K. Kase, K.
Shimoda, J. Organomet. Chem. 2005, 690, 6001 – 6007; e) Y. Lee,
A. H. Hoveyda, J. Am. Chem. Soc. 2006, 128, 15604 – 15605.
[7] Modern Aldol Reactions (Ed.: R. Mahrwald), Wiley-VCH,
Weinheim, 2004.
[26] The full scope of the Cu-catalyzed AAA with alkylaluminum
reagents will be reported in a separate account.
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 3860 –3864