Ajish Kumar, V. D. Chaudhari, T. Sharma, S. G. Sabharwal and
J. PrakashaReddy, Org. Biomol. Chem., 2005, 3, 3720.
8 For examples see: Y. Tzuzuki, K. Chiba, K. Mizuno, K. Tomita and
K. Suzuki, Tetrahedron: Asymmetry, 2001, 12, 2989; Y. Tzuzuki,
K. Chiba and K. Hino, Tetrahedron: Asymmetry, 2001, 12, 1793;
A. Madhan and B. Venkateswara Rao, Tetrahedron Lett., 2005, 46, 323.
9 S. G. Davies and O. Ichihara, Tetrahedron: Asymmetry, 1991, 2, 183;
S. G. Davies and I. A. S. Walters, J. Chem. Soc., Perkin Trans. 1, 1994,
1129; S. G. Davies, A. D. Smith and P. D. Price, Tetrahedron:
Asymmetry, 2005, 16, 2833.
10 Methyl 4-(N-benzyl-N-allylamino)but-2-enoate 4 can be prepared
readily on a multigram scale by addition of N-benzyl-N-allylamine to
methyl 4-bromocrotonate.
11 As indicated by 400 MHz 1H NMR spectroscopic analysis of the crude
reaction product.
12 The absolute configuration of 5 was assigned as (3R,aS) by analogy
with previous models developed to explain the stereoselectivity observed
during addition of lithium amide 3 to a,b-unsaturated acceptors; see
J. F. Costello, S. G. Davies and O. Ichihara, Tetrahedron: Asymmetry,
1994, 5, 3919.
13 F. Garro-Helion, A. Merzouk and G. Guibe´, J. Org. Chem., 1993, 58,
6109.
1
14 The e.e. of aminopyrrolidinone 6 was inferred by H NMR studies of
With an efficient stereodivergent route to functionalised syn-
and anti-3-amino-4-benzylpyrrolidines 9 and 12 in hand, the
application of this strategy to the synthesis of (3S,4S)-3-methoxy-
4-methylaminopyrrolidine 1 was investigated, with incorporation
of the desired N-methyl fragment within 1 deriving from conjugate
addition of lithium (S)-N-methyl-N-(a-methylbenzyl)amide 13.
Conjugate addition of lithium amide (S)-13 to butenoate 4 gave
b-amino ester (3R,aS)-14 in . 98% d.e., and in 93% yield and
. 98% d.e. after purification. N-Deallylation and cyclisation gave
pyrrolidinone 15 in 96% yield, with deprotonation of 15 with
LiTMP followed by enolate oxygenation with (+)-camphorsulfo-
nyloxaziridine (CSO) giving exclusively 3,4-anti-(3R,4S,aS)-16,
furnishing 16 in 86% yield and . 98% d.e. after purification.
O-Methylation, LiAlH4 reduction and hydrogenolysis furnished
the desired (3S,4S)-pyrrolidine 1 in 62% overall yield (3 steps) as its
di-p-toluenesulfonic acid salt with comparable spectroscopic
properties to the literature {[a]2D4 10.1 (c 1.1 in MeOH); lit.19 [a]2D9
+10.4 (c 1.0 in MeOH)} (Scheme 4).
In conclusion, lithium amide conjugate addition has been used
as the key step for the development of a simple and efficient
protocol for the preparation of polysubstituted aminopyrrolidines
in high d.e. and e.e. This protocol provides a stereodivergent route
to both anti- and syn-3-alkyl-4-aminopyrrolidines, and has been
applied to the synthesis of (3S,4S)-3-methoxy-4-methylaminopyr-
rolidine 1 in . 98% d.e. The further application of this
methodology to the synthesis of a variety of natural product
targets is currently under investigation in this laboratory.
the corresponding Mosher’s amides of pyrrolidinone 17, obtained in
89% yield via hydrogenolysis of 6, and comparison with an authentic
racemic standard.
Notes and references
15 (R)-(+)-3-Aminopyrrolidine (. 98% e.e.) is commercially available from
Aldrich.
{ CCDC 602326. For crystallographic data in CIF or other electronic
format see DOI: 10.1039/b604835h
16 X-ray crystal structure determination for 8. Data were collected using an
Enraf-Nonius k-CCD diffractometer with graphite monochromated
Mo-Ka radiation using standard procedures at 190 K. The structure
was solved by direct methods (SIR92), all non-hydrogen atoms were
refined with anisotropic thermal parameters. Hydrogen atoms were
added at idealised positions. The structure was refined using
CRYSTALS.17 X-ray crystal structure data for 8: [C33H34N2O]:
1 T. Rosen, D. T. W. Chu, I. M. Lico, P. B. Fernandez, K. Marsh,
L. Shen, V. G. Gepa and A. G. Pernet, J. Med. Chem., 1988, 31, 1598;
T. Rosen, D. T. W. Chu, I. M. Lico, P. B. Fernandez, L. Shen,
S. Borodkin and A. G. Penet, J. Med. Chem., 1988, 31, 1586; A. B.
Attygalle and D. E. Morgan, Chem. Soc. Rev., 1984, 13, 245; M. Pichon
and B. Figadere, Tetrahedron: Asymmetry, 1996, 7, 927.
2 N. Asano, R. J. Nash, R. J. Molineux, G. W. J. Fleet, D. D. Long,
S. M. Frederiksen, D. G. Marquess, A. L. Lane, D. J. Watkin and
D. A. Winkler, Tetrahedron: Asymmetry, 2000, 11, 1645; E. S. H.
El Ashry, N. Rashed and A. H. S. Shobier, Pharmazie, 2000, 55, 331.
3 G. W. J. Fleet, A. Karpas, R. A. Dwek, L. E. Fellows, A. S. Tyms,
S. Petursson, S. K. Namgoong, N. G. Ramsden, P. W. Smith, J. C. Son,
F. X. Wilson, D. R. Witty, G. S. Jacob and T. W. Rademacher, FEBS
Lett., 1998, 237, 128.
4 P. Di Cesare, D. Bouzard, M. Essiz, J. P. Jacquet, B. Ledoussal,
J. R. Keichel, P. Remuzon, R. E. Kessler, J. Fung-Tomc and
J. Desiderio, J. Med. Chem., 1992, 35, 4205; K. Tomita, Y. Tzuzuki,
K. I. Shibamori, M. Tashima, F. Kajikawa, Y. Sato, S. Kashimoto,
K. Chiba and K. Hino, J. Med. Chem., 2002, 45, 5564; Y. Tzuzuki,
K. Tomita, K. I. Shibamori, Y. Sato, S. Kashimoto and K. Chiba,
J. Med. Chem., 2004, 47, 2097.
˚
M 5 474.65, monoclinic, space group C 1 2 1, a 5 17.1297(3) A,
3
˚
˚
˚
b 5 8.2098(2) A, c 5 19.4751(4) A, b 5 100.0736(8)u, V 5 2696.6(1) A ,
Z 5 4, m 5 0.070 mm21, colourless block, crystal dimensions 5 0.2 6
0.2 6 0.2 mm. A total of 3244 unique reflections were measured for 5 ,
h , 27 and 2894 reflections were used in the refinement. The final
parameters were wR2 5 0.032 and R1 5 0.032 [I . 3s(I)].
17 D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge and
R. I. Cooper, CRYSTALS, 2003, Issue 12, Chemical Crystallography
Laboratory, Oxford, UK.
18 For the established anti-alkylation preference of b-amino enolates see
S. G. Davies and I. A. S. Walters, J. Chem. Soc., Perkin Trans. 1, 1994,
1129; the high stereocontrol asserted upon protonation of an enolate
anti to an adjacent heteroatom is also well documented; H. M. L. Davies,
L. M. Hodges and T. M. Gregg, J. Org. Chem., 2001, 66, 7898;
H. E. Zimmerman, Acc. Chem. Res., 1987, 20, 263; J. E. Mohrig,
R. E. Rosenberg, J. W. Apostol, M. Bastienaansen, J. W. Evans,
S. J. Franklin, C. D. Frisbie, S. S. Fu, M. L. Hamm, C. B. Hirose,
D. A. Hunstad, T. L. James, R. W. King, C. J. Larson, H. A. Latham,
D. A. Owen, K. A. Stein and R. Warnet, J. Am. Chem. Soc., 1997, 119,
479; L. Banfi and G. Guanti, Tetrahedron: Asymmetry, 1999, 10, 439.
19 Y. Tzuzuki, K. Chiba and K. Hino, Tetrahedron: Asymmetry, 2001, 12,
1793.
5 S. Cabrera, R. G. Arrayas and J. C. Carretero, J. Am. Chem. Soc., 2005,
127, 16394.
6 M. Shindo, K. Ohtsuki and K. Shishido, Tetrahedron: Asymmetry,
2005, 16, 2821.
7 H. E. A. El Sayed and A. El Nemr, Carbohydr. Res., 2003, 338, 2265;
B. G. Davis, M. A. T. Maughan, T. M. Chapman, R. Villard and
S. Courtney, Org. Lett., 2002, 4, 1026; D. D. Dhavale, K. S.
2666 | Chem. Commun., 2006, 2664–2666
This journal is ß The Royal Society of Chemistry 2006