difference in DEScal of CMBPs cannot be understood from the
DFT calculation data. The DEScal value of m-CMBP (13.0 kcal
molꢁ1) is relatively larger than that of p-CMBP (10.9 kcal
molꢁ1). o-Bond dissociation is, however, recognized to take
place in the S1 state of m-CMBP whereas it is absent from
triplet p-CMBP. The electronic character and state energy of
the S1 states of both m- and p-CMBPs are similar. Concerning
C–Cl bond cleavage in the S1 state, the BDE(C–Cl) values
differ by 5 kcal molꢁ1 between m- and p-CMBPs. From this
consideration, it is inferred that the degree of correlation
between the S1 state and the corresponding dissociative
1(p,s*) potential surface is affected by the BDE value. There
would be no interaction between the S1 state and 1(p,s*)
potentials for p-CMBP (unavoided crossing) while a weak
avoided crossing may cause between the potential curves for
m-CMBP due to the relatively large BDE(C–Cl).
4 C. L. MacIntosh, P. de Mayo and R. W. Yip, Tetrahedron Lett.,
1967, 37.
5 J. R. Collier and J. Hill, Chem. Commun. (London), 1968, 700.
6 (a) H. Shizuka, Bull. Chem. Soc. Jpn., 1968, 41, 2343; (b) H.
Shizuka and I. Tanaka, Bull. Chem. Soc. Jpn., 1969, 42, 52; (c)
H. Shizuka, T. Morita, Y. Mori and I. Tanaka, Bull. Chem. Soc.
Jpn., 1969, 42, 1831.
7 D. G. Whitten and W. E. Punch, Mol. Photochem., 1970, 2, 77.
8 F. R. Stermitz, D. E. Nicodem, V. P. Muralidharan and C. M.
O’Donnell, Mol. Photochem., 1970, 2, 87.
9 M. C. Caserio, W. Lauer and T. Novinson, J. Am. Chem. Soc.,
1970, 92, 6082.
10 S. Majeti, Tetrahedron Lett., 1971, 2523.
11 (a) P. J. Wagner, Acc. Chem. Res., 1971, 4, 168; (b) P. J. Wagner, P.
A. Kelso and A. E. Kemppainen, Mol. Photochem., 1970, 2, 81; (c)
P. J. Wagner and M. J. Lindstrom, J. Am. Chem. Soc., 1987, 109,
3062.
12 H. Heine, J. J. Rosenkranz and H. Rudolph, Angew. Chem., Int.
Ed. Engl., 1972, 11, 974.
13 J. R. Grunwell, N. A. Marron and S. Hanhan, J. Org. Chem., 1973,
38, 1559.
14 F. D. Lewis, C. H. Hoyle and J. G. Magyar, J. Org. Chem., 1975,
40, 488.
15 G. Brunton, H. C. McBay and K. U. Ingold, J. Am. Chem. Soc.,
1977, 99, 4447.
5. Conclusions
Photochemical properties of o-bond cleavage in m-HMBP
have been studied by laser photolysis techniques and DFT
calculations. Based on the efficiencies of free radical forma-
tion, it is shown that reactivity of o-cleavage clearly depends
on the substituted positions of HMBPs. The reaction processes
and efficiencies of o-cleavage in excited m-HMBP have been
rationalized with the aid of DFT calculations. With m-CMBP,
o-cleavage does not occur in the T1 state, but it does in the S1
state. The dissociation process in the S1 state of m-CMBP
competes with intersystem crossing to the T1 state. The
absence of dissociation in the T1 state of m-CMBP is explained
in terms of a large activation energy, DETcal originated from the
BDE(C–Cl) being larger than the triplet energy. These proper-
ties of m-CMBP are quite contrary to the reactivity towards o-
cleavage in p-CMBP. In contrast to CMBP, both the S1 and T1
states of m-BMBP are reactive to o-cleavage without inter-
system crossing from the S1 to T1 states. These properties are
similar to those of p-BMBP. Substituted position effects
between m-BMBP and p-BMBP are shown as a reduction in
the efficiencies, acSal and arTad. It seems that the aScal values of
BMBPs are affected by an activation barrier, DEScal whereas
spin densities on a s* orbital of the C–Br bond are crucial to
the reactivity of o-cleavage in the T1 states of BMBPs.
16 (a) J. C. Scaiano, M. J. Perkins, J. W. Sheppard, M. S. Platz and R.
L. Barcus, J. Photochem., 1983, 21, 137; (b) J. C. Netto-Ferreira,
W. L. Leigh and J. C. Scaiano, J. Am. Chem. Soc., 1985, 107, 2617;
(c) W. G. McGimpsey and J. C. Scaiano, Can. J. Chem., 1988, 66,
1474; (d) J. C. Scaiano, J. C. Netto-Ferreira and V. Wintgens, J.
Photochem. Photobiol., A, 1991, 59, 265.
17 M. A. Fox and C. A. Triebel, J. Org. Chem., 1983, 48, 835.
18 T. Wismontski-Kinittel and T. Kilp, J. Phys. Chem., 1984, 88, 110.
19 E. N. Step, V. F. Tarasov, A. L. Buchachenko and N. J. Turro, J.
Phys. Chem., 1993, 97, 363.
20 W. J. Leigh, J.-A. H. Banisch and M. S. Workentin, J. Chem. Soc.,
Chem. Commun., 1993, 988.
21 M. Hall, L. Chen, C. R. Pandit and W. G. McGimpsey, J.
Photochem. Photobiol., A, 1997, 111, 27.
22 Y. Kaneko, S. Hu and D. C. Neckers, J. Photochem. Photobiol., A,
1998, 114, 173.
23 S. A. Fleming and J. A. Pincock, Mol. Supramol. Photochem.,
1999, 3, 211.
24 S. Jockusch, M. S. Landis, F. Beat and N. J. Turro, Macromole-
cules, 2001, 34, 1619.
25 (a) T. Suzuki, Y. Kaneko, K. Maeda, T. Arai, K. Akiyama and S.
Tero-Kubota, Mol. Phys., 2002, 100, 1469; (b) T. Suzuki, Y.
Kaneko, M. Ikegami and T. Arai, Bull. Chem. Soc. Jpn., 2004,
77, 801.
26 (a) X. Allonas, J. Laleve
Photobiol., A, 2003, 159, 127; (b) X. Allonas, J. Laleve
Fouassier, J. Photopolym. Sci. Technol., 2004, 17, 29.
´
e and J.-P. Fouassier, J. Photochem.
´
e and J.-P.
27 X. Cai, P. Cygon, B. Goldfuss, A. G. Griesbeck, H. Heckroth, M.
Fujitsuka and T. Majima, Chem.–Eur. J., 2006, 12, 4662.
28 (a) M. Yamaji, S. Wakabayashi, K. Fukuda, S. Inomata and S.
Tobita, J. Photochem. Photobiol., A, 2006, 184, 86; (b) M. Yamaji,
S. Wakabayashi and S. Tobita, Res. Chem. Intermed., 2006, 32,
749.
Acknowledgements
This work was partially supported by a Scientific Research
Grant-in-Aid from the Ministry of Education, Culture, Sports,
Science and Technology of Japan. The authors thank Prof.
Seiji Tobita at Gunma University for his critical reading of the
manuscript.
29 E. J. Baum and J. N. Pitts, Jr, J. Phys. Chem., 1966, 70, 2066.
30 (a) P. J. Wagner, J. Sedon, C. Waite and A. Gudmundsdottir, J.
Am. Chem. Soc., 1994, 116, 10284; (b) P. J. Wagner and C. I.
Waite, J. Am. Chem. Soc., 1995, 117, 7388; (c) P. J. Wagner, J. H.
Sedon and A. Gudmundsdottir, J. Am. Chem. Soc., 1996, 118,
746.
31 (a) L. Thijs, S. N. Gupta and D. C. Neckers, J. Org. Chem., 1979,
23, 4123; (b) E. A. Morlion, M. D. Bohorquez, D. C. Neckers and
M. A. J. Rodger, J. Am. Chem. Soc., 1991, 113, 3599; (c) B. K.
Shah and D. C. Neckers, J. Org. Chem., 2002, 67, 6117; (d) B. K.
Shah, A. Gusev, M. A. J. Rogers and D. C. Neckers, J. Phys.
Chem. A, 2004, 108, 5926; (e) B. K. Shah and D. C. Neckers, J. Am.
Chem. Soc., 2004, 126, 1830.
References
1 N. J. Turro, Modern Molecular Photochemistry, Benjamin/Cum-
mings Publishing Co., Menlo Park, CA, 1978.
2 A. Gilbert and J. Baggott, in Essentials of Molecular Photochem-
istry, ed. P. J. Wagner, Blackwell Scientific Publications, Oxford,
1991.
32 T. Autrey, Ch. Devadoss, B. Sauerwein, J. A. Franz and G. B.
Schuster, J. Phys. Chem., 1995, 99, 869.
33 A. Wrzyszczynski, J. Bartoszewicz, G. L. Hug, B. Marciniak and J.
Paczkowski, J. Photochem. Photobiol., A, 2003, 155, 253.
3 A. Schonberg, A. K. Fateen and S. M. A. R. Omran, J. Am. Chem.
¨
Soc., 1956, 78, 1224.
ꢀc
This journal is the Owner Societies 2007
3274 | Phys. Chem. Chem. Phys., 2007, 9, 3268–3275