Angewandte
Chemie
The unsaturated side chains at the C2 and C6 atoms of
piperidines provide opportunities for functionalization of
enantiomerically enriched N-containing heterocyles; note-
worthy examples are provided in Scheme 2. The phenyl-
substituted allylic amine of 8 is cleaved with Na/NH3 (15 min,
ꢁ788C) and the resulting styrenyl olefin is site-selectively
(>98%) but as an equal mixture of diastereomers.[20] The
primary carbinol of 28 can be oxidized with PCC and then
NaClO2 to afford the corresponding carboxylic acid; subse-
quent treatment with HN(OMe)Me and EDC delivers 31 in
78% overall yield (from 28). Treatment of 31 with MeMgCl,
followed by carbamate reduction and quenching with meth-
anol, constitutes a one-pot conversion to saturated b-amino
ketone 32 in 75% yield. Similar to the formation of [D1]-29,
when the alkylation, reduction, hydroalumination sequence is
terminated by quenching with MeOD, [D1]-32 is obtained in
64% yield.[21]
The studies described herein underline the crucial posi-
tion of high-oxidation-state olefin metathesis catalysts and
point to important future directions in newcatalyst and
method development. Investigations along these lines are in
progress.
Received: December 20, 2006
Revised: March 7, 2007
Published online: May 11, 2007
Keywords: asymmetric catalysis · molybdenum ·
.
olefin metathesis · piperidines · ruthenium
[1] a) Handbook of Metathesis (Ed: R. H. Grubbs), Wiley-VCH,
Weinheim, 2003; b) K. C. Nicolaou, P. G. Bulger, D. Sarlah,
Angew. Chem. 2005, 117, 4564 – 4601; Angew. Chem. Int. Ed.
2005, 44, 4490 – 4527.
[2] R. R. Schrock, A. H. Hoveyda, Angew. Chem. 2003, 115, 4740 –
4782; Angew. Chem. Int. Ed. 2003, 42, 4592 – 4633.
[3] For a reviewof catalytic ring-opening olefin metathesis reac-
tions, see: T. O. Schrader, M. L. Snapper in Handbook of
Metathesis, Vol. 2 (Ed: R. H. Grubbs), Wiley-VCH, Weinheim,
2003, pp. 205 – 237.
[4] For catalytic asymmetric ring-closing metathesis processes that
deliver N-containing heterocycles, see: a) S. J. Dolman, E. S.
Sattely, A. H. Hoveyda, R. R. Schrock, J. Am. Chem. Soc. 2002,
124, 6991 – 6997; b) S. J. Dolman, R. R. Schrock, A. H. Hoveyda,
Org. Lett. 2003, 5, 4899 – 4902; c) E. S. Sattely, G. A. Cortez,
D. C. Moebius, R. R. Schrock, A. H. Hoveyda, J. Am. Chem.
Soc. 2005, 127, 8526 – 8533.
[5] a) J. J. Van Veldhuizen, J. S. Kingsbury, S. B. Garber, A. H.
Hoveyda, J. Am. Chem. Soc. 2002, 124, 4954 – 4955; b) J. J.
Van Veldhuizen, J. E. Campbell, R. E. Giudici, A. H. Hoveyda,
J. Am. Chem. Soc. 2005, 127, 6877 – 6882; for an overview, see:
c) A. H. Hoveyda, D. G. Gillingham, J. J. Van Veldhuizen, O.
Kataoka, S. B. Garber, J. S. Kingsbury, J. P. A. Harrity, Org.
Biomol. Chem. 2004, 2, 8 – 23.
Scheme 2. Representative functionalizations of enantiomerically
enriched piperidines obtained through Mo-catalyzed AROM/CM reac-
tions. TBS=tert-butyldimethylsilyl; 9-BBN=9-borabicyclo-
[3.3.1]nonane; LAH=LiAlH4; PCC=pyridinium chlorochromate;
EDC=1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide; HOBt=
1-hydroxybenzotriazole.
[6] For representative asymmetric ring-closing metathesis reactions
promoted by chiral Mo complexes, see: a) J. B. Alexander, D. S.
La, D. R. Cefalo, A. H. Hoveyda, R. R. Schrock, J. Am. Chem.
Soc. 1998, 120, 4041 – 4042; b) D. R. Cefalo, A. F. Keily, M.
Wuchrer, J. Y. Jamieson, R. R. Schrock, A. H. Hoveyda, J. Am.
Chem. Soc. 2001, 123, 3139 – 3140; c) A. F. Kiely, J. A. Jernelius,
R. R. Schrock, A. H. Hoveyda, J. Am. Chem. Soc. 2002, 124,
2868 – 2869; d) J. A. Jernelius, R. R. Schrock, A. H. Hoveyda,
Tetrahedron 2004, 60, 7345 – 7351.
[7] For asymmetric ring-closing metathesis reactions promoted by
Ru-based catalysts, see: a) T. J. Seiders, D. W. Ward, R. H.
Grubbs, Org. Lett. 2001, 3, 3225 – 3228; b) J. J. Van Veldhuizen,
D. G. Gillingham, S. B. Garber, O. Kataoka, A. H. Hoveyda, J.
Am. Chem. Soc. 2003, 125, 12502 – 12508; c) T. W. Funk, J. M.
Berlin, R. H. Grubbs, J. Am. Chem. Soc. 2006, 128, 1840 – 1846.
reduced to afford terminally unsaturated amino ether 27 as a
single diastereomer and in 85% yield of isolated product.
Site-selective hydroboration of enantiomerically enriched 23,
obtained through Mo- or Ru-catalyzed AROM/CM, leads to
the formation of primary alcohol 28. Treatment of 28 with
lithium aluminum hydride at 658C (THF) delivers 29 through
reduction of the carbamate and a rare process: directed
regioselective hydroalumination of the styrenyl alkene.[19]
When the above multistep transformation is quenched with
MeOD, [D1]-29 is obtained in 95% yield and as a single
regioisomer (by 400-MHz NMR analysis; > 98% deuterium
incorporation). When the reaction is quenched with dry O2,
diol 30 is isolated in 55% yield as a single regioisomer
Angew. Chem. Int. Ed. 2007, 46, 4534 –4538ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4537