1086
J. Am. Chem. Soc. 1998, 120, 1086-1087
the presence of racemic RuCl2(tolbinap)(dmf)n, (S,S)-1,2-diphe-
nylethylenediamine [(S,S)-DPEN],9 and KOH in a 7:1 mixture
of 2-propanol and toluene ([1] ) 0.6 M, ketone:Ru:diamine:KOH
molar ratio ) 500:1:1:2, 8 atm, 0 °C, 6 h), the allylic alcohol
(S)-2 was produced in 95% ee in 100% yield (eq 1).10,11 The
Asymmetric Activation of Racemic Ruthenium(II)
Complexes for Enantioselective Hydrogenation
Takeshi Ohkuma,† Henri Doucet,† Trang Pham,†
Koichi Mikami,*,‡ Toshinobu Korenaga,‡
Masahiro Terada,‡ and Ryoji Noyori*,†
Department of Chemistry and Molecular Chirality Research
Unit, Nagoya UniVersity, Chikusa, Nagoya 464-8602, Japan
Department of Chemical Technology, Tokyo Institute of
Technology, Meguro, Tokyo 152, Japan
ReceiVed August 18, 1997
The stereoselectivity and turnover frequency (rate) of asym-
metric catalysis with chiral metal complexes are significantly
affected by the nature of the donor compounds present in the
reaction mixture, resulting in various nonlinear phenomena.1-3
Certain racemic metal complexes can catalyze an enantioselective
transformation in the presence of a nonracemic auxiliary, when
one of the catalyst enantiomers is selectively activated4 or
deactivated.5 The recently developed RuCl2(diphosphine)Sn/1,2-
diamine/alkaline base ternary catalyst system effects practical
hydrogenation of a diverse array of nonfunctionalized ketones.6
The reaction with mild conditions (1 to 8 atm) exhibits high CdO/
CdC selectivity and excellent diastereo- and enantioselectivity.
Here if one can use a racemic diphosphine ligand for asymmetric
hydrogenation, the synthetic utility will be further increased. We
now have realized asymmetric activation of racemic diphosphine-
Ru(II) complexes using a nonracemic 1,2-diamine.
enantiomeric purity was very close to the 96% ee attainable with
a combination employing enantiomerically pure (R)-TolBINAP
and (S,S)-DPEN. The (R)-diphosphine/(R,R)-diamine combina-
tion (1:1 molar ratio) catalyzed the reaction slowly to give (S)-2
in only 26% ee. As illustrated in Figure 1, the rate of
hydrogenation with the (()-TolBINAP-Ru complex was en-
hanced with an increase in the amount of (S,S)-DPEN, reaching
a near maximum value with the addition of a 1.0 molar amount
of the diamine. On the other hand, the ee value of the product
was consistently high (>90%) from the beginning (diamine/Ru
> 0.25). Thus, (S,S)-DPEN was shown to more effectively
activate the (R)-TolBINAP-Ru isomer of the racemate under the
hydrogenation conditions employed.
A mixed-ligand catalyst was prepared from equimolar amounts
of the (()-TolBINAP-Ru complex and (S,S)-DPEN, and this
was followed by the addition of an equimolar amount of (R,R)-
DPEN. The system contains equal amounts of enantiomers for
both diphosphine and diamine (diphosphine:diamine ) 1:2).
Nevertheless, this mixture catalyzed hydrogenation of 1 in a
2-propanol-toluene solution containing KOH (8 atm, 14 h)
affording (S)-2 in 91% ee and 100% yield, in which the inherent
stereoselectivity of the (R)-TolBINAP/(S,S)-DPEN combination
was preserved. This result indicates that the interaction of the
RuCl2(diphosphine) complex and DPEN is virtually irreversible.
In fact, a complex prepared from RuCl2[(R)-tolbinap](dmf)n and
(S,S)-DPEN (1:1) in a 1:7 (CD3)2CDOD-C6D5CD3 mixture gave
a single 31P-NMR signal at δ 45.8 ppm (10% H3PO4 as external
standard), while the S/S,S ligand combination gave a signal at δ
46.2 ppm. A 1:0.5 to 1:2 mixture of RuCl2[(()-tolbinap](dmf)n
and (S,S)-DPEN showed these signals with equal intensities.
Hydrogenation of 9-acetylanthracene with the (()-TolBINAP/
(S,S)-DPEN combined system (0.9 M, ketone:Ru:diamine:KOH
) 250:1:1:2, 8 atm, 80 °C, 10 h) gave (R)-1-(9-anthryl)ethanol
RuCl2(tolbinap)(dmf)n,7,8 either racemic or enantio-pure, is a
feeble catalyst for hydrogenation of simple ketones. However,
when 2,4,4-trimethyl-2-cyclohexenone (1) was hydrogenated in
† Nagoya University.
‡ Tokyo Institute of Technology.
(1) (a) Puchot, C.; Samuel, O.; Dun˜ach, E.; Zhao, S.; Agami, C.; Kagan,
H. B. J. Am. Chem. Soc. 1986, 108, 2353-2357. (b) Guillaneux, D.; Zhao,
S.-H.; Samuel, O.; Rainford, D.; Kagan, H. B. J. Am. Chem. Soc. 1994, 116,
9430-9439.
(2) Review: (a) Noyori, R.; Kitamura, M. Angew. Chem., Int. Ed. Engl.
1991, 30, 49-69. See also: (b) Oguni, N.; Matsuda, Y.; Kaneko, T. J. Am.
Chem. Soc. 1988, 110, 7877-7878. (c) Soai, K.; Shibata, T.; Morioka, H.;
Choji, K. Nature 1995, 378, 767-768. (d) Avalos, M.; Babiano, R.; Cintas,
P.; Jime´nez, J. L.; Palacios, J. C. Tetrahedron: Asymmetry 1997, 8, 2997-
3017.
(3) For selected examples, see: (a) Terada, M.; Mikami, K.; Nakai, T. J.
Chem. Soc., Chem. Commun. 1990, 1623-1624. (b) Bolm, C.; Ewald, M.;
Felder, M. Chem. Ber. 1992, 125, 1205-1215. (c) Tanaka, K.; Matsui, J.;
Suzuki, H. J. Chem. Soc., Perkin Trans. 1 1993, 153-157. (d) Komatsu, N.;
Hashizume, M.; Sugita, T.; Uemura, S. J. Org. Chem. 1993, 58, 4529-4533.
(e) Evans, D. A.; Nelson, S. G.; Gagne´, M. R.; Muci, A. R. J. Am. Chem.
Soc. 1993, 115, 9800-9801. (f) Keck, G. E.; Krishnamurthy, D.; Grier, M.
C. J. Org. Chem. 1993, 58, 6543-6544. (g) Zhou, Q.-L.; Pfaltz, A.
Tetrahedron 1994, 50, 4467-4478. (h) Terada, M.; Mikami, K. J. Chem. Soc.,
Chem. Commun. 1994, 833-834. (i) Mikami, K.; Motoyama, Y.; Terada, M.
J. Am. Chem. Soc. 1994, 116, 2812-2820.
(4) (a) Matsukawa, S.; Mikami, K. Enantiomer 1996, 1, 69-73. (b) Mikami,
K.; Matsukawa, S. Nature 1997, 385, 613-615.
(5) (a) Maruoka, K.; Yamamoto, H. J. Am. Chem. Soc. 1989, 111, 789-
790. (b) Faller, J. W.; Parr, J. J. Am. Chem. Soc. 1993, 115, 804-805. (c)
Faller, J. W.; Tokunaga, M. Tetrahedron Lett. 1993, 34, 7359-7362. (d) Faller,
J. W.; Sams, D. W. I.; Liu, X. J. Am. Chem. Soc. 1996, 118, 1217-1218. (e)
Sablong, R.; Osborn, J. A.; Faller, J. W. J. Organomet. Chem. 1997, 527,
65-70. (f) Alcock, N. W.; Brown, J. M.; Maddox, P. J. J. Chem. Soc., Chem.
Commun. 1986, 1532-1534. (g) Brown, J. M.; Maddox, P. J. Chirality 1991,
3, 345-354.
(9) (a) Mangeney, P.; Tejero, T.; Alexakis, A.; Grosjean, F.; Normant, J.
Synthesis 1988, 255-257. (b) Pikul, S.; Corey, E. J. Org. Synth. 1993, 71,
22-29.
(10) A mixture of RuCl2[(()-tolbinap](dmf)n8 (9.4 mg, 0.01 mmol), (S,S)-
DPEN9 (2.1 mg, 0.01 mmol), 2-propanol (3 mL), toluene (1 mL), and a 0.5
M KOH solution in 2-propanol (40 µL, 0.02 mmol) placed in a glass autoclave
was degassed and sonicated for 15 min. 2-Propanol (4 mL) and 1 (691 mg,
5.0 mmol) were added to the autoclave and hydrogen was introduced to a
pressure of 8 atm. The reaction mixture was vigorously stirred for 6 h at 0
°C. Workup and chromatography with a short silica gel column gave (S)-2 in
95% ee (684 mg, 98% yield), [R]24 -88.3° (c 1.03, CH3OH).
(6) (a) Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J.
Am. Chem. Soc. 1995, 117, 2675-2676. (b) Ohkuma, T.; Ooka, H.; Ikariya,
T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 10417-10418. (c) Ohkuma, T.;
Ooka, H.; Yamakawa, M.; Ikariya, T.; Noyori, R. J. Org. Chem. 1996, 61,
4872-4873. (d) Ohkuma, T.; Ikehira, H.; Ikariya, T.; Noyori, R. Synlett 1997,
467-468.
(7) Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.;
Taketomi, T.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629-635.
(8) Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. Org. Synth. 1993,
71, 1-13.
(11) (R)- and (S)-2 are the key intDermediates in the synthesis of carotenoid-
derived odorants and other bioactive compounds. See: (a) Mori, K.;
Puapoomchareon, P. Liebigs Ann. Chem. 1991, 1053-1056. (b) Croteau, R.;
Karp, F. In Perfumes: Art, Science and Technology; Mu¨ller, P. M., Lamparsky,
D., Eds.; Blackie Academic & Professional: London, 1991; Chapter 4.
S0002-7863(97)02897-7 CCC: $15.00 © 1998 American Chemical Society
Published on Web 01/22/1998