G. Tircsó, A. Bényei, R. Király, I. Lázár, R. Pál, E. Brücher
FULL PAPER
[3] T. Kiss, M. Jezowska-Bojczuk, H. Kozlowski, P. Kafarski, K.
Antczak, J. Chem. Soc., Dalton Trans. 1991, 2275–2279.
[4] I. Lukes, K. Bazakas, P. Hermann, P. Vojtisek, J. Chem. Soc.,
Dalton Trans. 1992, 939–944.
samples (in general 15 mL) were stirred and argon was bubbled
through the solutions. KH-phthalate (pH = 4.005) and borax (pH
= 9.180) buffers were used to calibrate the pH meter. The H+ ion
concentration was obtained from the measured pH data by the
method suggested by Irving et al. A 0.01 HCl solution was ti-
trated in 1.0 Me4NCl (or 1.0 KNO3) with the Me4NOH (or
KOH) solution used for the titrations.[45] The difference between
the calculated and measured pH values was used to obtain the H+
ion concentrations from the pH values measured in the titration
experiments.[45] The ionic product of water (pKw) was also calcu-
lated from the data obtained in the titration of the 0.01 HCl
solution. The pKw values obtained in 1.0 Me4NCl and 1.0
KNO3 are 13.99 and 13.88, respectively. The protonation constants
of the ligands and stability constants of the complexes were calcu-
lated from the titration data with the computer program PSE-
QUAD.[37]
[5] P. Hermann, I. Lukes, J. Chem. Soc., Dalton Trans. 1995, 2605–
2610.
[6] a) J. Rohovec, I. Lukes, P. Vojtisek, I. Cisarova, P. Hermann,
J. Chem. Soc., Dalton Trans. 1996, 2685–2691; b) P. Hermann,
I. Lukes, P. Vojtisek, I. Cisarova, J. Chem. Soc., Dalton Trans.
1995, 2611–2618.
[7] G. B. Bates, E. Cole, D. Parker, R. Kataky, J. Chem. Soc., Dal-
ton Trans. 1996, 2693–2698.
[8] M. Lukas, M. Kyvala, P. Hermann, I. Lukes, D. Sanna, G.
Micera, J. Chem. Soc., Dalton Trans. 2001, 2850–2857.
[9] C. J. Broan, K. J. Jankowski, R. Kataky, D. Parker, A. M. Ran-
dall, A. Harrison, J. Chem. Soc., Chem. Commun. 1990, 1739–
1741.
[10] I. Lázár, A. D. Sherry, R. Ramasamy, E. Brücher, R. Király,
Inorg. Chem. 1991, 30, 5016–5019.
[11] D. Parker, K. Pulukkody, T. J. Norman, A. Harrison, L. Royle,
C. Walker, J. Chem. Soc., Chem. Commun. 1992, 1441–1443.
[12] K. P. Pulukkody, T. J. Norman, D. Parker, L. Royle, C. J.
Broan, J. Chem. Soc., Perkin Trans. 2 1993, 605–620.
[13] K. Bazakas, I. Lukes, J. Chem. Soc., Dalton Trans. 1995, 1133–
1137.
[14] J. Rohovec, P. Vojtisek, P. Hermann, J. Ludvik, I. Lukes, J.
Chem. Soc., Dalton Trans. 2000, 141–148.
[15] J. Rohovec, M. Kyvala, P. Vojtisek, P. Hermann, I. Lukes, Eur.
J. Inorg. Chem. 2000, 195–203.
NMR Measurements: The solutions of complexes were prepared by
mixing equivalent amounts of the ligands and ZnCl2 solutions. Af-
ter evaporation of the H2O the solid material was dissolved in D2O.
The pD of the solutions was monitored by the addition of KOD
or DCl (Cambridge Isotope Laboratories, Inc.) solutions and the
readings were corrected for the deuterium isotope effect using the
relationship pH = 0.4 + pD. Both one- and two-dimensional NMR
spectra were recorded on a Bruker Avance DRX-360 spectrometer
operating at 360.0 and at 90.5 MHz for 1H and 13C, respectively.
A Bruker DRX-500 spectrometer equipped with a Eurotherm vari-
able temperature unit (Ϯ0.1 K), which was calibrated by the meth-
anol method,[46] was used for variable-temperature measurements.
Two-dimensional 1H-1H correlation spectra (COSY-45, DQF-
COSY, NOESY, EXSY) were recorded using standard pulse se-
quences in direct mode with a 5-mm QNP probehead. 13C NMR
spectra were recorded in J-modulated or inverse gated decoupling
mode. Data processing was performed with the Bruker WinNMR
software package.
[16] M. A. Dhansay, P. W. Linder, R. G. Torrington, T. A. Modro,
J. Phys. Org. Chem. 1990, 3, 248–254.
[17] M. A. Dhansay, P. W. Linder, J. Coord. Chem. 1993, 28, 133–
145.
[18] A. Peyman, K. H. Budt, J. Spanig, B. Stowasser, D. Ruppert,
Tetrahedron Lett. 1992, 33, 4549–4552.
[19] M. Collinsova, J. Jiracek, Curr. Med. Chem. 2000, 7, 629–647.
[20] T. R. Varga, Synth. Commun. 1997, 27, 2899–2903.
[21] T. R. Varga, R. Király, E. Brücher, V. Hietapelto, ACH – Mod-
els in Chemistry 1999, 136, 431–439.
[22] L. Xu, S. J. Rettig, C. Orvig, Inorg. Chem. 2001, 40, 3734–3738.
[23] N. V. Nagy, T. Szabó-Plánka, G. Tircsó, R. Király, Z. Árkosi,
A. Rockenbauer, E. Brücher, J. Inorg. Biochem. 2004, 98, 1655–
1666.
[24] V. Kubicek, P. Vojtisek, J. Rudovsky, P. Hermann, I. Lukes,
Dalton Trans. 2003, 3927–3938.
Supporting Information (see footnote on the first page of this arti-
cle): Description of the synthetic procedures for compounds 1–10;
H-bond network in [H5L3]Cl (Figure S1); data of the H-bond net-
work in [H5L]Cl (Table S1); the H-bond network and long-range
packing in K[CuL1]·H2O (Figure S2); the H-bond network in
K[CuL1]·H2O (Table S2); 1H and 31P NMR titration curves for the
ligands L0, L1, and L4 (Figures S3–S7); temperature dependence of
[25] S. Aime, C. Cavallotti, E. Gianolio, G. B. Giovenzana, G. Pal-
misano, M. Sisti, Tetrahedron Lett. 2002, 43, 8387–8389.
[26] B. Song, T. Storr, S. Liu, C. Orvig, Inorg. Chem. 2002, 41, 685–
692.
1
1
the H NMR spectra of ZnL1 (Figure S8); H-1H COSY spectrum
of ZnL4 (Figure S9).
[27] L. Maier, J. Organomet. Chem. 1979, 178, 157–169.
[28] A. I. Natchev, Liebigs Ann. Chem. 1988, 861–867.
[29] L. Maier, M. J. Smith, Phosphorus Sulfur Silicon Relat. Elem.
1980, 8, 67–72.
[30] L. Maier, Helv. Chim. Acta 1967, 50, 1742–1746.
[31] Z. Jászberényi, A. Sour, É. Tóth, A. E. Merbach, Dalton Trans.
2005, 2713–2719.
Acknowledgments
This work was supported by the Hungarian Science Foundation
(OTKA T-038364 and OTKA T-043365) and performed within the
framework of the EU COST Action D18. I. L. is grateful to the
Hungarian Academy of Sciences for an István Széchenyi Fellowhip
and A. B. is grateful for an Öveges József Fellowship from the
Hungarian Research and Technology Foundation. The helpful dis-
cussions with Dr. Zoltán Kovács (University of Texas Southwest-
ern Medical Center) are gratefully acknowledged.
[32]
Z. D. Matovic, G. Pelosi, S. Ianelli, G. Ponticelli, D. D. Rad-
anovic, D. J. Radanovic, Inorg. Chim. Acta 1998, 268, 221–230
(ref. code: POWHOY in CSD).
[33]
[34]
F. H. Allen, Acta Crystallogr., Sect. B 2002, 58, 380–388.
S. H. Liu, E. Q. Fu, L. R. Chen, C. T. Wu, Jiegou Huaxue
(Chinese J. Struct. Chem.) 1999, 18, 38–40 (ref. code: HOG-
SOL in CSD).
[35]
[36]
[37]
N. D. Villanueva, M. Z. Chiang, J. R. Bocarsly, Inorg. Chem.
1998, 37, 685–692 (ref. code: PUQGIR in CSD).
A. E. Martell, R. M. Smith, Critical Stability Constants, vol.
1–6, Plenum Press, New York, 1974..
L. Zékány, I. Nagypál, Computational Methods for Determi-
nation of Formation Constants (Ed.: D. J. Legett), Plenum Press,
New York, 1985, p. 291.
[1] V. P. Kukhar, H. R. Hudson, Aminophosphonic and Aminophos-
phinic Acids: Chemistry and Biological Activity (Eds.: V. P. Ku-
khar, H. R. Hudson), John Wiley & Sons, New York, 2000, p.
660.
[2] T. Kiss, E. Farkas, M. Jezowska-Bojczuk, H. Kozlowski, E.
Kowalik, J. Chem. Soc., Dalton Trans. 1990, 377–379.
712
www.eurjic.org
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2007, 701–713