C O M M U N I C A T I O N S
Acknowledgment. We thank the University of Illinois at
Chicago for the Moriarty Fellowship (A.B.), the Protein Research
Laboratory at UIC for SPPS, and Professor Yasuhiro Kajihara,
Yokohama City University, for insightful discussions.
Scheme 4. Peptide Thioester Synthesis
Note Added after ASAP Publication. After this work was
published ASAP on July 21, 2007, we became aware that the
concept of native chemical ligation at phenylalanine had been
described previously: (a) Tchertchian, S.; Opligger, F.; Paolini, M.;
Manganiello, S.; Raimondi, S.; Depresle, B; Dafflon, N.; Gaertner,
H.; Botti, P. In Understanding Biology Using Peptides, Proceedings
of the 19th American Peptide Symposium, San Diego, June 18-
23, 2005; Blondelle, S. E., Ed.; Springer: New York, 2006; p 61.
(b) Botti, P.; Tchertchian, S. WO/2006/133962. We apologize for
this inadvertent oversight. This note was added on July 26, 2007.
Supporting Information Available: Full experimental details and
characterization data for all compounds. This material is available free
Scheme 5. Decapeptide Synthesis
References
(1) (a) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science
1994, 266, 776. (b) Dawson, P. E.; Kent, S. B. H. Annu. ReV. Biochem.
2000, 69, 923. (c) Yeo, D. S. Y.; Srinivasan, R.; Chen, G. Y.; Yao, S. Q.
Chem.sEur. J. 2004, 10, 4664. (d) Macmillan, D. Angew. Chem., Int.
Ed. 2006, 45, 7668.
tive desulfurization in the presence of Cys(Acm) (S-acetamidom-
ethyl cysteine).17
With proof of principle established, we turned to the synthesis
of more challenging peptides. To probe the limits of the system,
we selected two LYRMXXRANK sequences,18 with their densely
packed array of the more reactive AA side chains, which we
modeled on Dawson’s NCL probes.19 The N-Boc acid 8 was
employed as the final AA in the Fmoc-based SPPS of a pentapeptide
containing the RANK residues. Release from the Wang resin and
removal of the acid-sensitive protecting groups with reagent K
afforded the â-(SSEt)-FRANK peptide 15, thereby demonstrating
compatibility with the standard Fmoc-SPPS conditions.
Two further pentapeptides Boc-LY(OtBu)R(Pbf)MG and Boc-
LY(OtBu)R(Pbf)AM, 16 and 17, were prepared by Fmoc-SPPS on
chlorotrityl resin20 and, after cleavage from the support with acetic
acid were converted to their S-benzyl thioesters under the non-
racemizing Kajihara conditions with activation by PyBOP.21
Removal of the protecting groups and purification by RP-HPLC
provided the pentapeptides 18 and 19 (Scheme 4). With 19, the
use of the Kajihara conditions was critical to the success of the
enterprise as HATU-mediated thioesterification resulted in racem-
ization of the methionine residue.
Ligation of both thioesters 18 and 19 to the â-(SSEt)-FRANK
peptide 15 was achieved in the presence of excess sodium
2-mercaptoethanesulfonate and tris(2-carboxyethyl)phosphine hy-
drochloride (TCEP-HCl) in 0.1 M Tris buffer at pH 8 over 24 h at
room temperature. After purification by RP-HPLC, hydrogenolytic
desulfurization of both products was performed uneventfully in pH
7 phosphate buffer with nickel boride, resulting in the formation
of the target peptides LYRMGFRANK and LYRAMFRANK in
good overall yield (Scheme 5).
In conclusion, we have demonstrated that NCL can be extended
to N-terminal phenylalanine, through the use of the readily
accessible â-(SSEt)-Phe derivatives 7 and 8. NCL conducted in
this manner is not limited to coupling with C-terminal glycine
thioesters, provided that appropriate conditions are employed to
avoid racemization in the synthesis of the thioester. Furthermore,
the final desulfurization step is compatible with the presence of
methionine and ACM-protected cysteine. As we have described
facile syntheses of N-Boc-threo-â-hydroxy-L-histidine methyl ester,
and the corresponding tyrosine and tryptophan derivatives by the
analogous route to that employed here for N-Boc-threo-â-hydroxy-
L-phenylalanine methyl ester,14 we anticipate that this chemistry will
be readily extended to NCL at histidine, tyrosine, and tryptophan.
(2) Muir, T. W.; Sondhi, D.; Cole, P. A. Proc. Natl. Acad. Sci. U.S.A. 1998,
95, 6705.
(3) Bang, D.; Pentelute, B. L.; Kent, S. B. H. Angew. Chem., Int. Ed. 2006,
45, 3985.
(4) (a) Bang, D.; Kent, S. B. H. Angew. Chem., Int. Ed. 2004, 43, 2534. (b)
Bang, D.; Makhatadze, G. I.; Tereshko, V.; Kossiakoff, A. A.; Kent, S.
B. Angew. Chem., Int. Ed. 2005, 44, 3852.
(5) (a) Brik, A.; Ficht, S.; Yang, Y.-Y.; Bennett, C. S.; Wong, C.-H. J. Am.
Chem. Soc. 2006, 128, 15026. (b) Brik, A.; Yang, Y.-Y.; Ficht, S.; Wong,
C.-H. J. Am. Chem. Soc. 2006, 128, 5626. (c) Shin, Y.; Winans, K. A.;
Backes, B. J.; Kent, S. B. H.; Ellman, J. A.; Bertozzi, C. R. J. Am. Chem.
Soc. 1999, 121, 11684. (d) Dudkin, V. Y.; Miller, J. S.; Danishefsky, S.
J. J. Am. Chem. Soc. 2004, 126, 736. (e) Miller, J. S.; Dudkin, V. Y.;
Lyon, G. J.; Muir, T. W.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003,
42, 431.
(6) Torbeev, V. Y.; Kent, S. B. H. Angew. Chem., Int. Ed. 2007, 46, 1667.
(7) Yan, L. Z.; Dawson, P. E. J. Am. Chem. Soc. 2001, 123, 526.
(8) Selenocysteine has been employed to facilitate selective removal of the
chalcogenide: Quaderer, R.; Hilvert, D. Chem. Commun. 2002, 2620.
(9) Chen, G.; Warren, J. D.; Chen, J.; Wu, B.; Wan, Q.; Danishefsky, S. J. J.
Am. Chem. Soc. 2006, 128, 7460.
(10) (a) Coltart, D. M. Tetrahedron 2000, 56, 3449. (b) Offer, J.; Boddy, C.
N. C.; Dawson, P. E. J. Am. Chem. Soc. 2002, 124, 4642. (c) Clive, D. L.
J.; Hisaindee, S.; Coltart, D. M. J. Org. Chem. 2003, 68, 9247. (d) Wu,
B.; Chen, J. H.; Warren, J. D.; Chen, G.; Hua, Z. H.; Danishefsky, S. J.
Angew. Chem., Int. Ed. 2006, 45, 4116.
(11) (a) Saxon, E.; Armstrong, J. I.; Bertozzi, C. R. Org. Lett. 2000, 2, 2141.
(b) Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2001, 3, 9.
(c) Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2000, 2, 1939.
(d) Soellner, M. B.; Nilsson, B. L.; Raines, R. T. J. Am. Chem. Soc. 2006,
128, 8820.
(12) The expectation of selectivity is based on the weaker benzylic C-S bond
(∼60.4 kcal‚mol-1) compared with typical primary alkyl C-S bonds (73-
74 kcal‚mol-1): Luo, Y.-R. Bond Dissociation Energies in Organic
Compounds; CRC Press: Boca Raton, FL, 2003.
(13) Easton, C. J.; Hutton, C. A.; Roselt, P. D.; Tiekink, E. R. T. Tetrahedron
1994, 50, 7327.
(14) Crich, D.; Banerjee, A. J. Org. Chem. 2006, 71, 7106.
(15) (a) Hogg, D. R. In ComprehensiVe Organic Chemistry; Barton, D., Ollis,
W. D., Eds.; Pergamon Press: Oxford, 1979; Vol. 3, p 261. (b) Furukawa,
N.; Morishita, T.; Akasaka, T.; Oae, S. J. Chem. Soc., Perkin Trans. 2
1980, 432.
(16) Back, T. G.; Baron, D. L.; Yang, K. J. Org. Chem. 1993, 58, 2407.
(17) For protection of cysteine against desulfurization with the Acm group,
see: Pentelutte, B. L.; Kent, S. B. H. Org. Lett. 2007, 9, 687 and ref 8.
(18) L: leu, Y: tyr, R: arg, M: met, X: variable amino acid, A: ala, N: asn,
K: lys, G: gly (except G all have the L-configuration).
(19) Hackeng, T. M.; Griffin, J. H.; Dawson, P. E. Proc. Natl. Acad. Sci. U.S.A.
1999, 96, 10068.
(20) Barlos, K.; Chatzi, O.; Gatos, D.; Stavropoulos, G. Int. J. Peptide Protein
Res. 1991, 37, 513.
(21) (a) Kajihara, Y.; Yoshihara, A.; Hirano, K.; Yamamoto, N. Carbohydr.
Res. 2006, 341, 1333. (b) Hogenauer, T. J.; Wang, Q.; Sanki, A. K.;
Gammon, A. J.; Chu, C. H. L.; Kaneshiro, C. M.; Kajihara, Y.; Michael,
K. Org. Biomol. Chem. 2007, 5, 759.
JA072804L
9
J. AM. CHEM. SOC. VOL. 129, NO. 33, 2007 10065