D. Mitra et al. / Bioorg. Med. Chem. Lett. 17 (2007) 4514–4517
4517
References and notes
1. (a) Thurston, D. E. In Introduction to the Principles of
Drug Design and Action, 4th ed.; Smith and Williams,
2006; p 411; (b) Christensen, L. A.; Finch, R. A.; Booker,
A. J.; Vasquez, K. M. Cancer Res. 2006, 66, 4089.
2. Richter, C.; Park, J. W.; Ames, B. N. Proc. Natl. Acad.
Sci. U.S.A. 1988, 85, 6465.
3. Luczak, M. W.; Jagodzinski, P.; Folia, P. Histochem.
Cytobiol. 2006, 44, 143.
4. Kar, M.; Basak, A. Chem. Commun. 2006, 3818.
5. Nicolaou group first reported the DNA-cleaving ability of
propargyl sulfones via isomerization to the allenic coun-
terpart: see Nicolaou, K. C.; Wendeborn, S.; Maligres, P.;
Isshiki, K.; Zein, N.; Ellestad, G. Angew. Chem. Int. Ed.
Engl. 1991, 30, 418.
6. (a) Garratt, P. J.; Neoh, S. B. J. Org. Chem. 1979, 44,
2667; (b) Cheng, Y. S. P.; Garratt, P. J.; Neoh, S. B.;
Rumjanek, V. H. Isr. J. Chem. 1985, 26, 101; (c)
Braverman, S.; Duar, Y.; Segev, D. Tetrahedron Lett.
1979, 3181.
7. Maxam, A. M.; Gilbert, W. Methods Enzymol. 1980, 65,
499; Maxam, A. M.; Gilbert, W. Proc. Natl. Acad. Sci.
U.S.A. 1977, 74, 560.
8. Bose, M.; Groff, D.; Xie, J.; Brustad, E.; Schultz, P. G.
J. Am. Chem. Soc. 2006, 128, 388.
Figure 4. (a) pBR322 DNA-cleavage experiment of compounds 3 and
4 after 2.5-h incubation at 37 ꢁC; lane 1: control DNA in TAE buffer
(pH 8.5, 7 lL) + CH3CN (5 lL); lane 2: DNA in TAE buffer (pH 8.5,
7 lL) + Z-sulfone 4 (0.16 mM) in CH3CN (5 lL); lane 3: DNA in TAE
buffer (pH 8.5, 7 lL) + E-sulfone 3 (0.16 mM) in CH3CN (5 lL); (b)
DNA-cleavage experiment of compounds 2 and 1 after 1.5-h incuba-
tion at 37 ꢁC; lane 1: control DNA in TAE buffer (pH 8.5,
7 lL) + CH3CN (5 lL); lane 2: DNA in TAE buffer (pH 8.5,
7 lL) + Z-sulfone 2 (0.02 mM) in CH3CN (5 lL); lane 3: DNA in
TAE buffer (pH 8.5, 7 lL) + E-sulfone 1 (0.02 mM) in CH3CN (5 lL);
(c) DNA-cleavage experiment of compound 9 after 2.5-h incubation at
37 ꢁC lane 1: control DNA in TAE buffer (pH 8.5, 7 lL) + CH3CN
(5 lL); lane 2: DNA in TAE buffer (pH 8.5, 7 lL) + sulfone 9
(0.16 mM) in CH3CN (5 lL).
9. Koga, N.; Morokuma, K. J. Am. Chem. Soc. 1991, 113,
1907; Pickard, F. C., IV; Shepherd, R. L.; Gillis, A. E.;
Dunn, M.; Feldgus, S.; Kirschner, K. N.; Shields, G. C.;
Manoharan, M.; Alabugin, I. V. J. Phys. Chem. A 2006,
110, 2517.
126.8, 121.8, 117.6, 115.4, 83.9, 78.1, 57.8, 22.8; Mass
(ES+) m/z 535 (MH+).
For 3: dH (400 MHz, CDCl3) 7.85 (4H, d, J = 7.6 Hz),
7.59 (4H, m), 7.43 (6H, m), 7.08 (4H, m), 4.91 (2 · CH2,
m), 3.99 (2 · CH2, m); dC (100 MHz, CDCl3) 134.3,
134.2, 132.2, 129.2, 129.1, 128.6, 122.1 (CH), 117.6,
115.2, 82.6, 75.6, 57.4, 42.6; Mass (ES+) m/z 599 (MH+).
10. Kerwin, S. M. Tetrahedron Lett. 1994, 35, 1023.
11. The DNA used for the present study is pBR322 plasmid
DNA in mainly the supercoiled form. The identity of the
bands has been ascertained from the control DNA which
has Form I as a major band. The cleavage efficiency was
determined by checking the relative UV-absorbance of the
bands at 260 nm. The cleavage efficiency was also
measured by densitometry using image processing soft-
ware (Kodak 1D version V.3.6.3) and similar results were
obtained. It is to be noted that the control DNA specimen
is usually contaminated with some nicked form (form II).
The reason for having an alkaline pH of 8.5 was to aid the
propargyl to allene isomerization.
For 9: dH (200 MHz, CDCl3) 7.86–7.72 (5H, m), 7.50–
7.26 (5H, m), 7.17–7.10 (2H, m), 4.79 (2H, t, J = 2 Hz),
4.01 (2H, t, J = 2 Hz). Mass (ES+) m/z 337 (MH+).
Acknowledgments
M.K. and D.M. thank Council of Scientific and Indus-
trial Research (CSIR, Govt. of India) for research fel-
lowships. A.B. thanks the CSIR for financial support.
12. Caamano, A. M.; Vazquez, M. E.; Martinez-Costas, J.;
Castedo, L.; Mascarenas, J. L. Angew. Chem. Int. Ed.
2000, 39, 3104.