Organic Process Research & Development 2011, 15, 241–248
Enzymatic Preparation of an (S)-Amino Acid from a Racemic Amino Acid
Yijun Chen, Steven L. Goldberg, Ronald L. Hanson, William L. Parker, Iqbal Gill, Thomas P. Tully, Michael A. Montana,
Animesh Goswami, and Ramesh N. Patel*
Process Research and DeVelopment, Bristol-Myers Squibb, One Squibb DriVe, New Brunswick, New Jersey 08903, U.S.A.
Abstract:
genases,11,12 and dynamic resolution.13-16 The (S)-amino acid,
(S)-2-amino-3-(6-o-tolylpyridin-3-yl)propanoic acid (3), is a key
intermediate needed for synthesis of glucagon-like peptide-1
(GLP-1) mimics or GLP-1 receptor modulators potentially
useful for the treatment of type II diabetes.17-22
We have previously used (S)-amino acid dehydrogenases
to convert keto acids to the corresponding unnatural (S)-amino
acids,23-26 which were used in the synthetic routes to several
pharmaceutical candidate compounds. In this report we describe
the conversion of the racemic amino acid 1 to (S)-amino acid
The (S)-amino acid, (S)-2-amino-3-(6-o-tolylpyridin-3-yl)propanoic
acid (3), is a key intermediate needed for synthesis of an antidia-
betic drug candidate. Three enzymatic routes to 3 were explored.
(S)-Amino acid 3 could be prepared in 73% isolated yield with
99.9% ee from racemic amino acid 1 using (R)-amino acid oxidase
from Trigonopsis Wariabilis expressed in Escherichia coli in com-
bination with an (S)-aminotransferase using (S)-aspartate as amino
donor. The (S)-aminotransferase was purified from a soil organism
identified as Burkholderia sp. and cloned and expressed in E. coli.
(S)-Amino acid 3 with 100% ee was also prepared in 68% solution
yield and 54% isolated yield from 1 using recombinant (R)-amino
acid oxidase from T. Wariabilis and an (S)-amino acid dehydroge-
nase from Sporosarcina ureae. The cofactor NADH required for
the reductive amination reaction was regenerated using formate
and formate dehydrogenase. The chemoenzymatic dynamic reso-
lution of 1 by (R)-selective oxidation with Celite-immobilized (R)-
amino acid oxidase in combination with chemical imine reduction
using borane-ammonia complex gave an 81% solution yield and
68% isolated yield of 3 with 100% ee.
(11) Bommarius, A. S. In Enzyme Catalysis in Organic Synthesis , 2nd
ed.; Drauz, K., Waldmann, H., Eds.; Wiley-VCH: Weinheim, Ger-
many, 2002; Vol. 3, pp 1047-1063.
(12) Ohshima, T.; Soda, K. In StereoselectiVe Biocatalysis, Patel, R. N.,
Ed.; Marcel Dekker: New York, 2000; pp 877-902.
(13) Schichl, D. A.; Enthaler, S.; Holla, W.; Riermeier, T.; Kragl, U.; Beller,
M. Eur. J. Org. Chem. 2008, 20, 3506.
(14) Yamaguchi, S.; Komeda, H.; Asano, Y. Appl. EnViron. Microbiol.
2007, 73, 5370.
(15) Turner, N. J. Curr. Opin. Chem. Biol. 2004, 8, 114.
(16) May, O.; Verseck, S.; Bommarius, A.; Drauz, K. Org. Process Res.
DeV. 2002, 6, 452.
(17) Haque, T. S.; Ewing, W. R.; Mapelli, C.; Lee, V. G.; Sulsky, R. B.;
Riexinger, D. J.; Martinez, R. L.; Zhu, Y.; Ruan, Z. Human glucagon-
like peptide-1 receptor modulators and their use in the treatment of
diabetes and related conditions. PCT Int. Appl. WO 2007082264 A2,
2007.
Introduction
(18) Qian, F.; Ewing, W. R.; Mapelli, C.; Riexinger, D. J.; Lee, V. G.;
Sulsky, R. B.; Zhu, Y.; Haque, T. S.; Martinez, R. L.; Naringrekar,
V.; Ni, N.; Burton, L. S. Sustained release GLP-1 receptor modulators.
U.S. Pat. Appl. US 2007099835 A1, 2007.
(19) Ewing, W. R.; Mapelli, C.; Riexinger, D. J.; Lee, V. G.; Sulsky, R. B.;
Zhu, Y. N-terminally modified GLP-1 receptor modulators. PCT Int.
Appl. WO 2006127948 A2, 2006.
(20) Ewing, W. R.; Mapelli, C.; Sulsky, R. B.; Haque, T. S.; Lee, V. G.;
Riexinger, D. J.; Martinez, R. L.; Zhu, Y. Human glucagon-like-
peptide-1 modulators and their use in the treatment of diabetes and
related conditions. PCT Int. Appl. WO 2006014287 A1, 2006.
(21) Natarajan, S. I.; Mapelli, C.; Bastos, M. M.; Bernatowicz, M.; Lee,
V.; Ewing, W. R. Human glucagon-like-peptide-1 mimics and their
use in the treatment of diabetes and related conditions. U.S. Pat. Appl.
Publ. US 20040127423 A1, 2004.
(S)-Amino acids are useful intermediates for the synthesis
of many pharmaceuticals.1,2 Several enzymatic approaches have
been applied for their preparation, including (S)-hydantoinases
combined with (S)-carbamoylases or HNO2,3,4 (S)-acylases,5,6
(S)-amidases,7,8 (S)-transaminases,9,10 (S)-amino acid dehydro-
* To whom correspondence should be addressed. Present address: SLRP
Associates, Bridgewater, NJ 08807. Telephone: (908)-725-5738. E-mail:
(1) Patel, R. N. Coord. Chem. ReV. 2008, 252, 659.
(2) Bommarius, A. S.; Schwarm, M.; Drauz, K. J. Mol. Catal. B: Enzym.
1998, 5, 1.
(3) Rusnak-Mueller, M.; May, O.; Hermsen, P.-J.; Straatmann, H. M. M. G.;
Skranc, W.; Boesten, W. H. J.; Heemskerk, D.; DeLange, B.
Preparation of chiral R -amino acids using Escherichia coli expressing
hydantoinase L-carbamoylase, and hydantoin racemase genes. PCT Int.
Appl. WO 2008067981, 2008.
(22) Natarajan, S. I.; Bastos, M. M.; Bernatowicz, M. S.; Mapelli, C.; Lee,
V.; Ewing, W. R. Preparation of human glucagon-like-peptide-1
mimics and their use in the treatment of diabetes and related conditions.
PCT Int. Appl. WO 2003033671 A2, 2003.
(23) Hanson, R. L.; Singh, J.; Kissick, T. P.; Patel, R. N.; Szarka, L. J.;
Mueller, R. H. Bioorg. Chem. 1990, 18, 116.
(4) Altenbuchner, J.; Siemann-Herzberg, M.; Syldatk, C. Curr.Opin.
Biotechnol 2001, 12, 559.
(24) Hanson, R. L.; Schwinden, M. D.; Banerjee, A.; Brzozowski, D. B.;
Chen, B.-C.; Patel, B. P.; McNamee, C. G.; Kodersha, G. A.;
Kronenthal, D. R.; Patel, R. N.; Szarka, L. J. Bioorg. Med. Chem.
1999, 7, 2247.
(5) Chenault, H. K.; Dahmer, J.; Whitesides, G. M. J. Am. Chem. Soc.
1989, 111, 6354.
(6) Bommarius, A. S.; Drauz, K.; Gunther, K.; Knaup, G.; Schwarm, M.
Tetrahedron: Asymmetry 1997, 8, 3197.
(25) Hanson, R. L.; Goldberg, S. L.; Brzozowski, D. B.; Tully, T. P.;
Cazzulino, D.; Parker, W. L.; Lyngberg, O. K.; Vu, T. C.; Wong,
M. K.; Patel, R. N. AdV. Synth. Catal. 2007, 349, 1369.
(26) Hanson, R. L.; Howell, J. M.; LaPorte, T. L.; Donovan, M. J.;
Cazzulino, D. L.; Zannella, V.; Montana, M. A.; Nanduri, V. B.;
Schwarz, S. R.; Eiring, R. F.; Durand, S. C.; Wasylyk, J. M.; Parker,
W. L.; Liu, M. S.; Okuniewicz, F. J.; Chen, B.-C.; Harris, J. C.; Natalie,
K. J.; Ramig, K.; Swaminathan, S.; Rosso, V. W.; Pack, S. K.; Lotz,
B. T.; Bernot, P. J.; Rusowicz, A.; Lust, D. A.; Tse, K. S.; Venit,
J. J.; Szarka, L. J.; Patel, R. N. Enzyme Microb. Technol. 2000, 26,
348.
(7) Hermes, H. F. M.; Tandler, R. F.; Sonke, T.; Dijkhuizen, L.; Meijer,
E. M. Appl. EnViron. Microbiol. 1994, 60, 153.
(8) Sonke, T.; Ernste, S.; Tandler, R. F.; Kaptein, B.; Peeters, W. P. H.;
van Assema, F. B. J.; Wubbolts, M. G.; Schoemaker, H. E. Appl.
EnViron. Microbiol. 2005, 71, 7961.
(9) Taylor, P. P.; Pantaleone, D. P.; Senkpeil, R. F.; Fotheringham, I. G.
Trends Biotechnol. 1998, 16, 412.
(10) Rozzell, J. D.; Bommarius, A. S. In Enzyme Catalysis in Organic
Synthesis , 2nd ed.; Drauz, K., Waldmann, H., Eds.; Wiley-VCH:
Weinheim, Germany, 2002; Vol. 2, pp 873-893.
10.1021/op1001534 2011 American Chemical Society
Published on Web 08/09/2010
Vol. 15, No. 1, 2011 / Organic Process Research & Development
•
241