Appl. Phys. Lett., 2001, 79, 156; (g) S. Lamansky, P. Djurovich,
D. Murphy, F. Abdel-Razzaq, H. E. Lee, C. Adachi, P. E. Buttows,
S. R. Forrest and M. E. Thompson, J. Am. Chem. Soc., 2001, 123,
4304; (h) S.-C. Lo, G. J. Richards, J. P. J. Markham, E. B. Namdas,
S. Sharma, P. L. Burn and I. D. W. Samuel, Adv. Funct. Mater.,
2005, 15, 1451; (i) Y. J. Su, H. L. Huang, C. L. Li, C. H. Chien,
Y. T. Tao, P. T. Chou, S. Datta and R. S. Liu, Adv. Mater., 2003,
15, 884; (j) S.-J. Yeh, M.-F. Wu, C.-T. Chen, Y.-H. Song, Y. Chi,
M.-H. Ho, S.-F. Hsu and C. H. Chen, Adv. Mater., 2005, 17, 285.
2 (a) F. C. Chen, Y. Yang, M. E. Thompson and J. Kido, Appl. Phys.
Lett., 2002, 80, 2308; (b) X. Gong, J. C. Ostrowski, M. R. Robinson,
D. Moses, G. C. Bazan and A. J. Heeger, Adv. Mater., 2002, 14,
581; (c) X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses and
A. J. Heeger, Appl. Phys. Lett., 2003, 81, 3711.
3 (a) Y. Kawamura, S. Yanagida and S. R. Forrest, J. Appl. Phys.,
2002, 92, 87; (b) X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses,
A. J. Heeger, M. S. Liu and A. K. Y. Jen, Adv. Mater., 2003, 15,
45; (c) P. A. Lane, L. C. Palilis, D. F. O’Brien, C. Giebeler,
A. J. Cadby, D. G. Lidzey, A. J. Campbell, W. Blau and
D. D. C. Bradley, Phys. Rev. B: Condens. Matter, 2001, 68,
235206; (d) C. Y. Jiang, W. Yang, J. B. Peng, S. Xiao and Y. Cao,
Adv. Mater., 2004, 16, 537; (e) M. Suzuki, S. Tokito, F. Sato,
T. Igarashi, K. Kondo, T. Koyama and T. Yamaguchi, Appl. Phys.
Lett., 2005, 86, 103507; (f) X. Yang, D. C. Mu¨ller, D. Neher and
K. Meerholz, Adv. Mater., 2006, 18, 948.
4 R. A. Negres, X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses
and A. J. Heeger, Phys. Rev. B: Condens. Matter, 2003, 68, 115209.
5 (a) G. Hughes and M. R. Bryce, J. Mater. Chem., 2005, 15, 94; (b)
C. Wang, M. Kilitziraki, L.-O. Palsson, M. R. Bryce,
A. P. Monkman and I. D. W. Samuel, Adv. Funct. Mater., 2001,
11, 47; (c) S. Bettington, M. Tavasli, M. R. Bryce, A. Beeby, H. Al-
Attar and A. P. Monkman, Chem.–Eur. J., 2007, 13, 1423; (d)
K. T. Kamtekar, C. Wang, S. Bettington, A. S. Batsanov,
I. F. Perepichka, M. R. Bryce, J. H. Ahn, M. Rabinal and
M. C. Petty, J. Mater. Chem., 2006, 16, 3823; (e) R. A. Campos,
I. P. Kovalev, Y. Guo, N. Wakili and T. Skotheim, J. Appl. Phys.,
1996, 80, 7144; (f) M. R. Robinson, M. B. O’Regan and
G. C. Bazan, Chem. Commun., 2000, 1645; (g) W.-Y. Wong,
Z. He, S.-K. So, K.-L. Tong and Z. Lin, Organometallics, 2005, 24,
4079; (h) W.-Y. Wong, G.-J. Zhou, X.-M. Yu, H.-S. Kwok and
B.-Z. Tang, Adv. Funct. Mater., 2006, 16, 838; (i) W.-Y. Wong,
C.-L. Ho, Z.-Q. Gao, B.-X. Mi, C.-H. Chen, K.-W. Cheah and
Z. Lin, Angew. Chem., Int. Ed., 2006, 45, 7800; (j) Z. Liu, M. Guan,
Z. Bian, D. Nie, Z. Gong, Z. Li and C. Huang, Adv. Funct. Mater.,
2006, 16, 1441; (k) L. Chen, H. You, C. Yang, X. Zhang, J. Qin
and D. Ma, J. Mater. Chem., 2006, 16, 3332.
6 S. Lamansky, P. I. Djurovich, F. Abdel-Razzaq, S. Garon,
D. L. Murphy and M. E. Thompson, J. Appl. Phys., 2002, 92, 1570.
7 (a) J. F. Ambrose, L. L. Carpenter and R. F. Nelson,
J. Electrochem. Soc., 1975, 122, 876; (b) K. Brunner, A. V. Dijken,
H. Borner, J. J. Bastiaansen, N. M. Kiggen and B. M. Langeveld,
J. Am. Chem. Soc., 2004, 126, 6035; (c) A. Chen, J. Liao, Y. Liang,
M. O. Ahmed, H. Tseng and S. Chen, J. Am. Chem. Soc., 2003,
125, 636; (d) J.-F. Morin, N. Drolet, Y. Tao and M. Leclerc, Chem.
Mater., 2004, 16, 4619.
J = 5.1 Hz, 2H), 7.34–7.42 (m, 6H), 7.14–7.22 (m, 8H), 6.68 (s,
2H), 5.27 (s, 1H), 4.11 (d, J = 3.9 Hz, 4H), 2.03 (m, 2H), 1.85
(s, 6H), 1.26–1.37 (m, 16H), 0.86–0.92 (m, 12H). Anal. Calcd
for C67H69IrN4O2 (%): C 69.70, H 6.02, N 4.85; Found: C
69.22, H 6.35, N 4.93. MS (FAB): m/z 1055 (M+ 2 acac).
Ir(3-PhPyCz)2(acac) (4). Yield: 74%. 1H NMR (CDCl3,
300 MHz) d[ppm]: 8.55 (d, J = 5.4 Hz, 2H ), 8.05–7.99 (m, 4H),
7.83 (d, J = 5.4 Hz, 2H), 7.75 (t, J = 7.8 Hz, 2H), 7.63 (d, J =
8.1 Hz, 2H), 7.40–7.48 (m, 6H), 7.36 (d, J = 8.1 Hz, 2H), 7.15–
7.20 (m, 6H), 6.57 (s, 2H ), 5.19 (s, 1H ), 4.04 (d, J = 3.6 Hz,
4H), 1.97 (m, 2H), 1.76 (s, 6H), 1.18–1.27 (m, 16H), 0.77–0.85
(m, 12H ). Anal. Calcd for C67H69IrN4O2 (%): C 69.70, H 6.02,
N 4.85; Found C 69.79, H 6.41, N 4.98. MS (FAB): m/z 1055
(M+ 2 acac).
PLED Fabrication and measurements
The device configuration was ITO/PEDOT(40 nm)/(PVK +
40% PBD)–Ir-complex (80 nm)/Ba(4 nm)/Al(120 nm) and ITO/
PEDOT(40 nm)/PVK(40 nm)/(PFO(poss) + 30% PBD)–Ir-
complex (80 nm)/Ba(4 nm)/Al(120 nm). The fabrication of
electrophosphorescent devices followed our previous proce-
dure.3d A 40 nm-thick layer of poly(ethylenedioxythiophene)–
poly(styrene sulfonic acid) (PEDOT–PSS) was spin-cast onto
pre-cleaned ITO-glass substrates. A mixture of Ir-complex
with host was spin-cast from a chlorobenzene solution (for
PVK + PBD) and p-xylene–chlorobenzene = 7 : 3 (for
PFO(poss) + PBD). The deposition speed and the thickness
of the barium and aluminium layers were monitored with a
thickness–rate meter model STM-100 (Sycon Instrument,
Inc.). Device fabrication was carried out in a controlled
atmosphere dry-box (Vacuum Atmosphere Co.) under N2
circulation. Current density(I)–voltage(V)–luminance(L) data
were collected using a Keithley 236 source measurement unit
and a calibrated silicon photodiode. External EL quantum
efficiencies ( QEext) were obtained by measuring the total light
output in all directions in an integrating sphere (IS-080,
Labsphere). The luminance (cd m22) and luminous efficiency
(cd A21) were measured by a silicon photodiode and calibrated
using
a PR-705 SpectraScan spectrophotometer (Photo
Research). Electroluminescence spectra were recorded using
a CCD spectrophotometer (Instaspec 4. Oriel).
Acknowledgements
8 (a) X. Zhang, C. Yang, L. Chen, K. Zhang and J. Qin, Chem. Lett.,
2006, 35, 72; (b) C. Yang, X. Zhang, H. You, L.-Y. Zhu, L. Chen,
L.-N. Zhu, Y. Tao, D. Ma, Z. Shuai and J. Qin, Adv. Funct.
Mater., 2007, 17, 651.
9 (a) F.-I. Wu, H.-J. Su, C.-F. Shu, L. Luo, W.-G. Diau,
C.-H. Cheng, J.-P. Duan and G.-H. Lee, J. Mater. Chem., 2005,
15, 1035; (b) A. J. Sandee, C. K. Williams, N. R. Evans,
J. E. Davies, C. E. Boothby, A. Kohler, R. H. Friend and
A. B. Holmes, J. Am. Chem. Soc., 2004, 126, 7041.
10 (a) M. Nonoyama, Bull. Chem. Soc. Jpn., 1974, 47, 767; (b)
M. Tavasli, S. Bettington, M. R. Bryce, A. S. Batsanov and
A. P. Monkman, Synthesis, 2005, 1619.
11 (a) K. A. King, P. J. Spellane and R. J. Watts, J. Am. Chem. Soc.,
1985, 107, 1431; (b) S. Sprouse, K. A. King, P. J. Spellane and
R. J. Watts, J. Am. Chem. Soc., 1984, 106, 6647; (c) L. Chen,
C. Yang, J. Qin, J. Gao, H. You and D. Ma, J. Organomet. Chem.,
2006, 391, 3519.
We thank the National Natural Science Foundation of China
(project no. 20474047 and 20371036) and the Program for New
Century Excellent Talents in University, the Ministry of
Education of China for financial support.
References
1 (a) M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley,
M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151; (b)
Y. Cao, I. D. Parker and A. J. Heeger, Nature, 1999, 397, 414; (c)
M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha and
Z. V. Vardeny, Nature, 2001, 409, 494; (d) M. A. Baldo,
S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest,
Appl. Phys. Lett., 1999, 75, 4; (e) C. Adachi, M. A. Baldo,
S. R. Forrest and M. E. Thompson, Appl. Phys. Lett., 2000, 77,
904; (f) M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki and Y. Taga,
12 J. C. Ostrowski, M. R. Robinson, A. J. Heeger and G. C. Bazan,
Chem. Commun., 2002, 784.
This journal is ß The Royal Society of Chemistry 2007
J. Mater. Chem., 2007, 17, 3451–3460 | 3459