6346
A. Arasappan et al. / Tetrahedron Letters 48 (2007) 6343–6347
Table 2.
at P3 was in hydrophobic contact with the enzyme,
while the cyclohexyl residue was solvent exposed.
O
H
N
In summary we have developed a practical and efficient
diastereoselective route toward amino acids containing
b-quaternary center using Strecker chemistry. Some of
the hindered amino acids prepared were evaluated as
P3 surrogates resulting in potent HCV NS3 serine prote-
ase inhibitors. From SAR studies, b-methyl cycloalkyl-
glycine residue containing inhibitors exhibited P3 cap/
P3 synergy similar to earlier P3 tert-leucine containing
inhibitors. Inhibitor 35, with b-methyl cyclohexylglycine
moiety at P3 and urea cap afforded the best binding and
cellular replicon potency, similar to SCH 503034 that is
currently undergoing human clinical studies.
NH2
N
H
N
O
O
X
O
O
n
a
Compd #
X
n
KÃi (nm)
EC90 (nM)
37
38
36
34
35
O
1
1
3
4
4
700
280
23
120
13
nt
nt
500
nt
400
NH
NH
O
NH
a nt = not tested.
Acknowledgements
b-methyl cyclopropyl P3 compound 38. Incorporation
of the six-membered ring, b-methyl cyclohexylglycine,
at P3 position afforded inhibitors 34 and 35. While the
tert-butyl carbamate capped inhibitor 34 was less po-
tent, the tert-butyl urea capped compound 35 exhibited
the best binding (KÃi = 13 nm) and cellular potency (rep-
licon EC90 = 400 nM).12 Previously, we discovered
interesting synergy between the P3 cap and P3 moiety.2
Thus, for P3 L-cyclohexylglycine containing inhibitors,
tert-butyl carbamate cap provided better potency. On
the other hand, for P3 L-tert-leucine containing inhibi-
tors, tert-butyl urea cap was optimal, which resulted in
discovery of SCH 503034. In our present study, from
the potency data (Table 2) it was clear that inhibitors
with b-methyl cycloalklglycine P3 moiety exhibited syn-
ergy similar to those containing tert-leucine P3. Thus,
urea capped targets were more potent than their respec-
tive carbamate capped compounds.
We thank the Structural Chemistry group for providing
NMR and Mass Spectral assistance. We thank the
Virology group (Dr. B. Malcolm, Dr. R. Liu, N. But-
kiewicz, J. Pichardo) for providing KÃi and replicon
EC90 data.
References and notes
1. (a) Cohen, J. Science 1999, 285, 26; (b) Houghten, M. In
Virology; Fields, B. N., Knipe, D. M., Howley, P. M.,
Eds.; Raven Press: New York, 1996; pp 1035–1058; (c)
Cuthbert, J. A. Clin. Microbiol. Rev. 1994, 7, 505.
2. Venkatraman, S.; Bogen, S. L.; Arasappan, A.; Bennett,
F.; Chen, K.; Jao, E.; Liu, Y.-T.; Lovey, R. G.; Hendrata,
S.; Huang, Y.; Pan, W.; Parekh, T.; Pinto, P.; Popov, V.;
Pike, R. E.; Ruan, S.; Santhanam, B.; Vibulbhan, B.; Wu,
W.; Yang, W.; Kong, J.; Liang, X.; Wong, J.; Liu, R.;
Butkiewicz, N.; Chase, R.; Hart, H.; Agrawal, S.; Ingrav-
allo, P.; Pichardo, J.; Kong, R.; Baroudy, B.; Malcolm, B.;
Guo, Z.; Prongay, A.; Madison, V.; Broske, L.; Cui, X.;
Cheng, K.-C.; Hsieh, T. Y.; Brisson, J.-M.; Prelusky, D.;
Korfmacher, W.; White, R.; Bogdanowich-Knipp, S.;
Pavlovsky, A.; Bradley, P.; Saksena, A. K.; Ganguly, A.
K.; Piwinski, J.; Girijavallabhan, V.; Njoroge, F. G. J.
Med. Chem. 2006, 49, 6074.
X-ray crystal structure of the inhibitor 35 bound to the
protease is shown in Figure 2. The core interactions of
35 with the protease resembled those of our previous
inhibitors.2 Interestingly, the quaternary methyl group
3. (a) Magnin, D. R.; Robl, J. A.; Sulsky, R. B.; Augeri, D.
J.; Huang, Y.; Simpkins, L. M.; Taunk, P. C.; Betebenner,
D. A.; Robertson, J. G.; Abboa-Offei, B. E.; Wang, A.;
Cap, M.; Xin, L.; Tao, L.; Sitkoff, D. F.; Malley, M. F.;
Gougoutas, J. Z.; Khanna, A.; Huang, Q.; Han, S.-P.;
Parker, R. A.; Hamann, L. G. J. Med. Chem. 2004, 47,
2587; (b) Zask, A.; Birnberg, G.; Cheung, K.; Kaplan, J.;
Niu, C.; Norton, E.; Suayan, R.; Yamashita, A.; Cole, D.;
Tang, Z.; Krishnamurthy, G.; Williamson, R.; Khafizova,
G.; Musto, S.; Hernandez, R.; Annable, T.; Yang, X.;
Discafani, C.; Beyer, C.; Greenberger, L. M.; Loganzo, F.;
Ayral-Kaloustian, S. J. Med. Chem. 2004, 47, 4774.
4. (a) Kazmaier, U. J. Org. Chem. 1996, 61, 3694; (b)
Hasegawa, M.; Taniyama, D.; Tomioka, K. Tetrahedron
2000, 56, 10153; (c) Chowdari, N. S.; Suri, J. T.; Barbas,
C. F. Org. Lett. 2004, 6, 2507.
5. (a) Chakraborty, T. K.; Hussain, K. A.; Reddy, G. V.
Tetrahedron 1995, 51, 9179; (b) Pellicciari, R.; Costantino,
G.; Giovagnoni, E.; Mattoli, L.; Brabet, I.; Pin, J.-P.
Bioorg. Med. Chem. Lett. 1998, 8, 1569; (c) Reddy, R.;
Jaquith, J. B.; Neelagiri, V. R.; Saleh-Hanna, S.; Durst, T.
Figure 2. X-ray structure of 35 bound to the protease.