Journal of Medicinal Chemistry
Article
Aldosterone synthase inhibitor ameliorates angiotensin II-induced
organ damage. Circulation 2005, 111, 3087−3094.
(21) (a) Meredith, E. L.; Ksander, G.; Monovich, L. G.; Papillon, J. P.
N.; Liu, Q.; Miranda, K.; Morris, P.; Rao, C.; Burgis, R.; Capparelli,
M.; Hu, Q.-Y.; Singh, A.; Rigel, D. F.; Jeng, A. Y.; Beil, M.; Fu, F.; Hu,
C.-W.; LaSala, D. Discovery and in vivo evaluation of potent dual
CYP11B2 (aldosterone synthase) and CYP11B1 inhibitors. ACS Med.
(18) (a) Rigel, D. F.; Fu, F.; Beil, M.; Hu, C.-W.; Liang, G.; Jeng, A.
Y. Pharmacodynamic and pharmacokinetic characterization of the
aldosterone synthase inhibitor FAD286 in two rodent models of
hyperaldosteronism: Comparison with the 11β-hydroxylase inhibitor
metyrapone. J. Pharmacol. Exp. Ther. 2010, 334, 232−243. (b) Lea1,
W. B.; Kwak, E. S.; Luther, J. M.; Fowler, S. M.; Wang, Z.; Ma, J.;
Fogo, A. B.; Brown, N. J. Aldosterone antagonism or synthase
inhibition reduces end-organ damage induced by treatment with
angiotensin and high salt. Kidney Int. 2009, 75, 936−944. (c) Mulder,
P.; Mellin, V.; Favre, J.; Vercauteren, M.; Remy-Jouet, I.; Monteil, C.;
Richard, V.; Renet, S.; Henry, J. P.; Jeng, A. Y.; et al. Aldosterone
synthase inhibition improves cardiovascular function and structure in
rats with heart failure: a comparison with spironolactone. Eur. Heart J.
2008, 29, 2171−2179. (d) Huang, B. S.; White, R. A.; Ahmad, M.;
Jeng, A. Y.; Leenen, F. H. H. Central infusion of aldosterone synthase
inhibitor prevents sympathetic hyperactivity and hypertension by
central Na+ in Wistar rats. Am. J. Phys. 2008, 295, R166−R172.
(e) Minnaard-Huiban, M.; Emmen, J. M. A.; Roumen, L.; Beugels, I. P.
E.; Cohuet, G. M. S.; van Essen, H.; Ruijters, E.; Pieterse, K.; Hilbers,
P. A. J.; Ottenheijm, H. C. J.; Plate, R.; de Gooyer, M. E.; Smits, J. F.
M.; Hermans, J. J. R. Fadrozole reverses cardiac fibrosis in
spontaneously hypertensive heart failure rats: discordant enantiose-
lectivity versus reduction of plasma aldosterone. Endocrinology 2008,
́
Chem. Lett. 2013, 4, 1203−1207. (b) Menard, J.; Rigel, D. F.; Watson,
C.; Jeng, A. Y.; Fu, F.; Beil, M.; Liu, J.; Chen, W.; Hu, C.-W.; Leung-
Chu, J.; LaSala, D.; Liang, G.; Rebello, S.; Zhang, Y.; Dole, W. P.
Aldosterone synthase inhibition: cardiorenal protection in animal
disease models and translation of hormonal effects to human subjects.
J. Trans. Med. 2014, 12, 340.
́
(22) (a) Amar, L.; Azizi, M.; Menard, J.; Peyrard, S.; Watson, C.;
Plouin, P. F. Aldosterone synthase inhibition with LCI699: a proof-of-
concept study in patients with primary aldosteronism. Hypertension
2010, 831−838. (b) Calhoun, D. B.; White, W. B.; Krum, H.; Guo, G.;
́
Bermann, G.; Trapani, A.; Leftkoowitz, M. P.; Menard, J. Effects of a
novel aldosterone synthase inhibitor for treatment of primary
hypertension: Results of a randomized, double-blind, placebo.
Circuation 2011, 124, 1945−1955. (c) Kams, A. D.; Bral, J. M.;
Hartman, D.; Peppard, T.; Schumacher, C. Study of aldosterone
synthase inhibition as an add-on therapy in resistant hypertension. J.
Clin. Hypertens. 2013, 15, 186−192. (d) Amara, L.; Azizi, M.; Menard,
J.; Peyrard, S.; Plouin, P.-F. Sequential comparison of aldosterone
synthase inhibition andmineralocorticoid blockade in patients with
primary aldosteronism. J. Hypertens. 2013, 31, 624−629. (e) Azizi, M.;
Amar, L.; Menard, J. Aldosterone synthase inhibition in humans.
Nephrol., Dial., Transplant. 2013, 28, 36−43.
́
149, 28−31. (f) Menard, J.; Pascoe, L. Can the dextroenantiomer of
the aromatase inhibitor fadrozole be useful for clinical investigation of
aldosterone-synthase inhibition? J. Hypertens. 2006, 24, 993−997.
(23) Andersen, K.; Hartman, D.; Peppard, T.; Hermann, D.; Van Ess,
P.; Lefkowitz, M.; Trapani, A. The effects of aldosterone synthase
inhibition on aldosterone and cortisol in patients with hypertension: a
phase II, randomized, double-blind, placebo-controlled, multicenter
study. J. Clin. Hypertens. 2012, 14, 580−587.
(19) (a) Hartmann, R. W.; Muller, U.; Ehmer, P. B. Discovery of
̈
selective CYP11B2 (aldosterone synthase) inhibitors for the therapy of
congestive heart failure and myocardial fibrosis. Eur. J. Med. Chem.
2003, 38, 363−366. (b) Ulmschneider, S.; Muller-Vieira, U.; Klein, C.
̈
D.; Antes, I.; Lengauer, T.; Hartmann, R. W. Synthesis and evaluation
of (pyridylmethylene) tetrahydronaphthalenes/-indanes and structur-
ally modified derivatives: potent and selective inhibitors of aldosterone
synthase. J. Med. Chem. 2005, 48, 1563−1575. (c) Ulmschneider, S.;
(24) Bertagna, X.; Pivonello, R.; Fleseriu, M.; Zhang, Y.; Robinson,
P.; Taylor, A.; Watson, C. E.; Maldonado, M.; Hamrahian, A. H.;
Boscaro, M.; Biller, B. M. K. LCI699, a potent 11-hydroxylase
inhibitor, normalizes urinary cortisol in patients with Cushing’s
disease: results from a multicenter, proof-of-concept study. J. Clin.
Endocrinol. Metab. 2014, 99, 1375−1383.
(25) Bird, L.; Hanley, N.; Word, R.; Mathis, J.; Mason, J.; Rainey, W.
Human NCI-H295 adrenocortical carcinoma cells: a model for
angiotensin-II responsive aldosterone secretion. Endocrinology 1993,
133, 1555−1561.
Muller-Vieira, U.; Mitrenga, M.; Hartmann, R. W.; Oberwinkler-
̈
Marchais, S.; Klein, C. D.; Bureik, M.; Bernhardt, R.; Antes, I.;
Lengauer, T. Synthesis and evaluation of imidazolylmethylenetetrahy-
dronaphthalenes and imidazolylmethyleneindanes: potent inhibitors of
aldosterone synthase. J. Med. Chem. 2005, 48, 1796−1805. (d) Voets,
M.; Antes, I.; Scherer, C.; Muller-Vieira, U.; Biemel, K.; Barassin, C.;
̈
Oberwinkler-Marchais, S.; Hartmann, R. W. Heteroaryl substituted
naphthalenes and structurally modified derivatives: selective inhibitors
of CYP11B2 for the treatment of congestive heart failure and
myocardial fibrosis. J. Med. Chem. 2005, 48, 6632−6642. (e) Voets,
(26) (a) Rahier, A.; Taton, M. Fungicides as tools in studying
postsqualene sterol synthesis in plants. Pestic. Biochem. Physiol. 1997,
57, 1−27. (b) Bossche, H. V.; Marichal, P.; Coene, M.-C.; Willemsens,
G.; Le Jeune, L.; Cools, W.; Verhoeven, H. Regulation of Isopentenoid
Metabolism; Nes, W.D., et al., Eds.; American Chemical Society:
Washington, DC, 1992; Chapter 16, pp 219−230.
(27) The absolute stereochemistry of 16 was elucidated by X-ray
crystallography. The absolute chemistry of all pure active enantiomers
reported in this manuscript was tentatively assigned by analogy.
(28) La Sala, D.; Shibanaka, Y.; Jeng, A. Y. Coexpression of CYP11B2
or CYP11B1 with adrenodoxin and adrenodoxin reductase for
assessing the potency and selectivity of aldosterone synthase inhibitors.
Anal. Biochem. 2009, 394, 56−61.
(29) For reports of CYP11B1 inhibitors selective over CYP11B2, see
the following: (a) Emmerich, J.; Hu, Q.; Hanke, N.; Hartmann, R. W.
Cushing’s syndrome: development of highly potent and selective
CYP11B1 inhibitors of the (pyridylmethyl)pyridine type. J. Med.
Chem. 2013, 56, 6022−6032. (b) Hille, U. E.; Zimmer, C.;
Haupenthal, J.; Hartmann, R. W. Optimization of the first selective
steroid-11β-hydroxylase (CYP11B1) inhibitors for the treatment of
cortisol dependent diseases. ACS Med. Chem. Lett. 2011, 2, 559−564.
(c) Yin, L.; Lucas, S.; Maurer, F.; Kazmaier, U.; Hu, Q.; Hartmann, R.
W. Novel imidazol-1-ylmethyl substituted 1,2,5,6-tetrahydro-pyrrolo-
[3,2,1-ij]quinolin-4-ones as potent and selective CYP11B1 inhibitors
for the treatment of Cushing’s syndrome. J. Med. Chem. 2012, 55,
6629−6633.
M.; Antes, I.; Scherer, C.; Muller-Vieira, U.; Biemel, K.; Oberwinkler-
̈
Marchais, S.; Hartmann, R. W. Synthesis and evaluation of heteroaryl-
substituted dihydronaphthalenes and indenes: potent and selective
inhibitors of aldosterone synthase (CYP11B2) for the treatment of
congestive heart failure and myocardial fibrosis. J. Med. Chem. 2006,
49, 2222−2231. (f) Hille, U. E.; Zimmer, C.; Vock, C. A.; Hartmann,
R. W. First selective CYP11B1 inhibitors for the treatment of cortisol-
dependent diseases. ACS Med. Chem. Lett. 2011, 2, 2−6. (g) Gobbi, S.;
Hu, Q.; Negri, M.; Zimmer, C.; Belluti, F.; Rampa, A.; Hartmann, R.
W.; Bisi, A. Modulation of cytochromes P450 with xanthone-based
molecules: from aromatase to aldosterone synthase and steroid 11β-
hydroxylase inhibition. J. Med. Chem. 2013, 56, 1723−1729.
(h) Adams, C. M.; Hu, C.-W; Jeng, A. Y.; Karki, R.; Ksander, G.;
LaSala, D.; Leung-Chu, J.; Liang, G.; Liu, Q.; Meredith, E.; Rao, C.;
Rigel, D. F.; Shi, J.; Smith, S.; Springer, C.; Zhang, C. The discovery of
potent inhibitors of aldosterone synthase that exhibit selectivity over
11-β-hydroxylase. Bioorg. Med. Chem. Lett. 2010, 20, 4324−4327.
(20) (a) Hu, Q.; Yin, L.; Hartmann, R. W. Aldosterone synthase
inhibitors as promising treatments for mineralocorticoid dependent
cardiovascular and renal diseases. J. Med. Chem. 2014, 57, 5011−5022.
(b) Cerny, M. A. Progress towards clinically useful aldosterone
synthase inhibitors. Curr. Top. Med. Chem. 2013, 13, 1385−1401.
U
J. Med. Chem. XXXX, XXX, XXX−XXX