In summary, we have successfully developed a novel post-
functionalization strategy to fabricate encoding and multifunc-
tional silica nano-probes. Our post-functionalization strategy does
not involve the batch-to-batch preparation process or variation of
the type or concentration of doped dyes, which makes the
preparation process rather labor saving and efficient and leads to
well-controlled size homogeneousness. In addition, the core-shell
architectural silica nanoparticles will allow doping of other
fluorescent dyes and chelate ligands in the silica core and shell.
The post-functionalized nano-probes can also be used in time-
gated multiplex bioanalysis because of the long fluorescence
lifetime of the two inorganic dyes. It is expected that our post-
functionalized nano-probes will find various biological applica-
tions in multiplex bioanalysis, fluorescence imaging and MRI.
This research was supported by National Natural Science
Foundation of China (No. 20745004).
Fig. 4 Fluorescence emission spectra of encoding and multifunctional
silica nanoparticles post-functioned with different concentration ratios of
Tb3+ and Gd3+ ions; inset table: concentration ratios of Gd3+ and Tb3+
ions determined by ICP-MS.
Notes and references
1 (a) L. Wang, K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith,
Y. Wu and W. Tan, Anal. Chem., 2006, 78, 646; (b) R. Wilson,
A. R. Cossins and D. G. Spiller, Angew. Chem., Int. Ed., 2006, 45, 6104.
2 (a) L. Wang, C. Yang and W. Tan, Nano Lett., 2005, 5, 37; (b) L. Wang
and W. Tan, Nano Lett., 2006, 6, 84; (c) H. Ow, D. R. Larson,
M. Srivastava, B. A. Baird, W. W. Webb and U. Wiesner, Nano Lett.,
2005, 5, 113; (d) G. A. Lawrie, B. J. Battersby and M. Trau, Adv. Funct.
Mater., 2003, 13, 887.
from the fluorescence spectra (Fig. 4), silica nano-probes with
different fluorescence emission (encoding) doped with magnetic
resonance (MR) contrast agent (multifunction), Gd3+ ions, can be
obtained via this facile post-functionalization strategy. The inset
table of Fig. 4 shows the concentration ratios of Gd3+ and Tb3+
ions in the encoding and multifunctional silica nanoparticles
determined by inductively coupled plasma-mass spectroscopy
(ICP-MS). The conclusive ICP-MS data also confirmed the
successful binding of Tb3+ and Gd3+ ions in the silica matrix.
Successful doping of plentiful Gd3+ ions indicates that the MR
contrast enhancement can be reasonably pronounced when the
post-functionalized silica nanoparticles are used in MRI. In the
present study, although the MRI measurements of multicolor and
multifunctional silica nanoparticles were not performed, MR
studies of Gd3+ shell-doped silica nanoparticles reported by Santra
and co-workers have demonstrated that this type of nanoparticle
can result in image contrast on both T1- and T2-weighted images
to a larger extent than a commonly used MR contrast agent.6c
Thus, we affirm that our post-functionalized nano-probes could
find various biological applications in magnetic resonance imaging
and encoding fluorescence multiplex bioanalysis.
3 M. Nakamura, M. Shono and K. Ishimura, Anal. Chem., 2007, 79,
6507.
4 (a) P. Debouttie`re, S. Roux, F. Vocanson, C. Billotey, O. Beuf, A. Favre-
Re´guillon, Y. Lin, S. Pellet-Rostaing, R. Lamartine, P. Perriat and
O. Tillement, Adv. Funct. Mater., 2006, 16, 2330; (b) S. Santra, H. Yang,
P. H. Holloway, J. T. Stanley and R. A. Mericle, J. Am. Chem. Soc.,
2005, 127, 1656; (c) B. G. Trewyn, S. Giri, I. I. Slowing and V. S.-Y. Lin,
Chem. Commun., 2007, 3236.
5 (a) M. F. Kircher, U. Mahmood, R. S. King, R. Weissleder and
L. Josephson, Cancer Res., 2003, 63, 8122; (b) S. Wang, B. R. Jarrett,
S. M. Kauzlarich and A. Y. Louie, J. Am. Chem. Soc., 2007, 129, 3848;
(c) J. Kim, S. Park, J. E. Lee, A. M. Jin, J. H. Lee, I. S. Lee, I. Yang,
J. S. Kim, S. K. Kim, M. H. Cho and T. Hyeon, Angew. Chem., Int.
Ed., 2006, 45, 7754; (d) C. W. Lu, Y. Hung, J. K. Hsiao, M. Yao,
T. H. Chung, Y. S. Lin, S. H. Wu, S. C. Hsu, H. M. Liu, C. Y. Mou,
C. S. Yang, D. M. Huang and Y. C. Chen, Nano Lett., 2007, 7, 149.
6 (a) L. Prinzen, R. J. J. H. M. Miserus, A. Dirhsen, T. M. Hackeng,
N. Deckers, N. J. Bitsch, R. T. A. Megens, K. Douma, J. W. Heemskerk,
M. E. Kooi, P. M. Frederik, D. W. Slaaf, M. A. M. J. Zandvoort and
C. P. M. Reutelingsperger, Nano Lett., 2007, 7, 93; (b) R. Bakalova,
Z. Zhelev, I. Aoki, H. Ohba, Y. Imai and I. Kanno, Anal. Chem., 2006,
78, 5925; (c) S. Santra, R. P. Bagwe, D. Dutta, J. T. Stanley,
G. A. Walter, W. Tan, B. M. Moudgil and R. A. Mericle, Adv. Mater.,
2005, 17, 2165; (d) J. L. Bridot, A. C. Faure, S. Laurent, C. Rivie`re,
C. Billotey, B. Hiba, M. Janier, V. Josserand, J. L. Coll, L. V. Elst,
R. Muller, S. Roux, P. Perriat and O. Tillement, J. Am. Chem. Soc.,
2007, 129, 5076; (e) J. S. Kim, W. J. Rieter, K. M. L. Taylor, H. An,
W. Lin and W. Lin, J. Am. Chem. Soc., 2007, 129, 8962.
For multiplex bioanalysis and multifunctional bioimaging, the
dispersion and homogeneousness of the nano-probes are both
particularly important criteria. The dispersion of silica nano-
particles has been demonstrated to be very effective because of the
high hydrophilicity and biocompatibility of silica.1a,2,3 The
homogeneousness of silica nanoparticles fabricated in different
batches or doped with different types or concentration of dyes,
however, is difficult to be controlled by existing strategies.
Different from existing strategies in the literature, our post-
functionalization strategy does not involve the batch-to-batch
preparation process as well as the variation in the type or
concentration of doped dyes. Thus, the homogeneousness of the
encoding and multifunctional nano-probes fabricated via the
proposed post-functionalization strategy is very high (Fig. 1c), with
a relative standard deviation of the particle size less than 6%.
7 C. Wu, J. Zheng, C. Huang, J. Lai, S. Li, C. Chen and Y. Zhao, Angew.
Chem., Int. Ed., 2007, 46, 5393.
8 R. P. Bagwe, C. Yang, L. R. Hilliard and W. Tan, Langmuir, 2004, 20,
8336.
9 (a) J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd edn,
Kluwer/Plenum, New York, 1999, p. 86; (b) K. E. Sapsford, L. Berti
and I. L. Medintz, Angew. Chem., Int. Ed., 2006, 45, 4562; (c) C. Sun,
J. Yang, L. Li, X. Wu, Y. Liu and S. Liu, J. Chromatogr., B, 2004, 803,
173.
10 (a) P. Debouttie`re, S. Roux, F. Vocanson, C. Billotey, O. Beuf, A. Favre-
Re´guillon, Y. Lin, S. Pellet-Rostaing, R. Lamartine, P. Perriat and
O. Tillement, Adv. Funct. Mater., 2006, 16, 2330; (b) A. E. Martele and
R. M. Smith, Critical Stability Constants, vol. 6, Plenum, New York
1986.
11 Z. Ye, M. Tan, G. Wang and J. Yuan, Anal. Chem., 2004, 76, 513.
752 | Chem. Commun., 2008, 750–752
This journal is ß The Royal Society of Chemistry 2008