=
=
=
163.8 and 166.1 (CO2Me), 166.5 ( CMe2), 167.0 and 167.8
Reaction of trans-[PtCl2{NH C(CH2CO2Me)ON CMe2}-
(C(O) N). 195Pt NMR, d: −2151 (785 Hz). FAB+-MS, m/z: 650
=
=
=
(NCCH2CO2Me)]4,cis-[PtCl2{NH C(CH2CO2Me)ON CMe2}-
[M]+. Anal. Calcd for C17H28N4O6Cl2Pt: C, 31.39; H, 4.34; N, 8.61.
Found: C, 31.42; H, 4.03; N, 8.85.
=
(NCCH2CO2Me)] 4a or trans-[PtCl2{N C(CH2CO2Me)ON-
(Me)C(H)(C6H4Me-4)}(NCCH2CO2Me)] 6 with cyclic nitrone
−
+
=
O N CHCH2CH2CMe2 8. A solution of 4 or 4a (50.0 mg,
X-Ray crystallographic data for 4
0.093 mmol) or 6 (50.0 mg, 0.081 mmol) in dry CH2Cl2 (3 mL)
was added at room temperature to the cyclic nitrone 8 (1 eq).
The mixture was stirred at room temperature for 10 min and a
bright yellow solution formed. The progress of the reaction was
monitored by TLC. After evaporation of the solvent to dryness
in vacuo, the residue was purified by column chromatography
(SiO2–CH2Cl2, Et2O) followed by evaporation of the solvent
in vacuo to give the final yellow products 13, 13a or 10, respectively.
Intensity data were collected using a Bruker AXS-KAPPA APEX
II diffractometer using graphite monochromated Mo-Ka radia-
tion. Data was collected at 150 K using omega scans of 0.5◦ per
frame and a full sphere of data was obtained. Cell parameters were
retrieved using Bruker SMART software and refined using Bruker
SAINT on all the observed reflections. Absorption corrections
were applied using SADABS. Structure was solved by direct
methods by using the SHELXS-97 package22 and refined with
SHELXL-9723 with the WinGX graphical user interface.24 All
hydrogens were inserted in calculated positions except H1, H21A
and H21B which were located. Least square refinement with
anisotropic thermal motion parameters for all the non-hydrogen
atoms and isotropic for the remaining atoms gave R1 = 0.0283
[I > 2r (I); R1 = 0.0345 (all data)]. The maximum and minimum
peaks in the final difference electron density map are of 1.449 and
=
=
trans-PtCl2{N C(CH2CO2Me)ONC(H)(CH2CH2CMe2)} {N
C(CH2CO2Me)ON(Me)C(H)(C6H4Me-4)} 10. (two diastereoiso-
mers 1 : 1). Yield: 82%. TLC on SiO2: Rf = 0.50 (eluent CH2Cl2–
−1
=
Et2O (20 : 1)). IR (cm ): 1750 (CO2Me), 1660 (C N), 1171 (C–O).
1H NMR, d: 1.11 and 1.28 (two s, 3H each, Me), 1.58–1.77 (m,
2H, CH2), 2.18–2.25 (m, 1H, CH2), 2.38 (s, 3H, CH3Ph), 2.68–
2.73 (m, 1H, CH2), 2.96 (s, 3H, CH3N), 3.74 and 3.85 (two s, 3H
each, MeO), 3.79–4.04 (m, 3H, CH2CO2Me), 4.33–4.43 (m, 1H,
CH2CO2Me), 5.47 (m, 1H, N–CH–N, oxadiazoline-b), 5.88 (s, 1H,
N–CH-N, oxadiazoline-a), 7.25 (d, JHH 8.4 Hz, 2H, CHaromatic), 7.56
−3
˚
−1.452 e A , located around the platinum atom.‡
1
(d, JHH 8.4 Hz, 2H, CHaromatic). 13C{ H} NMR, d: 22.0 (CH3Ph),
Acknowledgements
23.3 and 27.6 (Me groups), 30.8, 30.9 and 34.0 (CH2), 34.2 (CH3N),
47.1 (CH2), 53.5 and 53.7 (MeO), 71.5 (Me2C-N), 90.0 (N–CH–
N, oxadiazoline-b), 92.5 (N–CH-N, oxadiazoline-a), 128.6, 129.9,
133.7 and 140.1 (Caromatic), 163.8 and 164.0 (CO2Me), 165.8 and
This work has been partially supported by the Fundac¸a˜o para
a Cieˆncia e a Tecnologia (FCT) and its POCI 2010 program
(FEDER funded) (Portugal). J. L. expresses gratitude to FCT
for a post-doc fellowship (grant SFRH/BPD/20927/2004).
166.1 (C(O) N). 195Pt NMR, d: −2247 (806 Hz). FAB+-MS, m/z:
=
726 [M]+. Anal. Calcd for C23H32N4O6Cl2Pt: C, 38.02; H, 4.44; N,
7.71. Found: C, 38.25; H, 4.51; N, 7.79.
References
1 (a) M. D. Hall and T. W. Hambley, Coord. Chem. Rev., 2002, 232, 49;
(b) Platinum-Based Drugs in Cancer Therapy, ed. L. R. Kelland and
N. P. Farrell, Humana Press, Totowa, NJ, 2000; (c) E. Wong and C. M.
Giandomenico, Chem. Rev., 1999, 99, 2451; (d) T. W. Hambley, Coord.
Chem. Rev., 1997, 166, 181.
2 (a) G. Natile and L. G. Marzilli, Coord. Chem. Rev., 2006, 250, 1315;
(b) B. Rosenberg, Platinum Met. Rev., 1971, 15, 42; (c) B. Rosenberg,
L. Van Camp, J. E. Trosko and H. V. Mansour, Nature, 1969, 222, 385;
(d) B. Rosenberg, L. Van Camp, E. B. Grimley and A. J. Thomson,
J. Biol. Chem., 1967, 242, 1347.
3 A. J. L. Pombeiro and V. Yu. Kukushkin, Reactivity of Coordinated
Nitriles, in Comprehensive Coordination Chemistry II, ed. A. B. P. Lever,
Elsevier, Amsterdam, 2nd edn, 2003, vol. 1, ch. 1.34, pp. 639–660, and
references therein.
4 V. Yu. Kukushkin and A. J. L. Pombeiro, Chem. Rev., 2002, 102, 1771.
5 V. Yu. Kukushkin and A. J. L. Pombeiro, Coord. Chem. Rev., 1999, 181,
147.
=
trans-PtCl2{N C(CH2CO2 Me)ONC(H)(CH2 CH2 CMe2 )}
=
=
{NH C(CH2CO2Me)ON CMe2}] 13. Yield: 81%. TLC on
SiO2: Rf = 0.54 (eluent CH2Cl2–Et2O (10 : 1)). IR (cm−1): 1749
1
=
(CO2Me), 1657 and 1665 (C N), 1170 (C–O). H NMR, d: 1.13
and 1.31 (two s, 3H each, Me), 1.61–1.83 (m, 2H, CH2), 2.02 and
2.04 (two s, 3H each, CMe2), 2.28–2.36 (m, 1H, CH2), 2.89–
2.94 (m, 1H, CH2), 3.78 and 3.80 (two s, 3H each, MeO), 3.93 (d,
=
JHH 16.5 Hz, 1H, CH2), 4.12 (s, 2H, CH2), 4.25 (d, JHH 16.5 Hz,
1H, CH2), 5.56 (m, 1H, N–CH–N), 8.15 (s, br, 1H, NH). 13C{ H}
1
=
NMR, d: 17.9 and 22.4 ( CMe2), 23.4 and 27.6 (Me groups), 31.1,
34.1, 40.0 and 40.1 (CH2), 53.4 and 53.5 (MeO), 71.5 (Me2C-N),
=
90.2 (N–CH–N), 163.9 and 166.1 (CO2Me), 166.4 ( CMe2), 167.0
and 167.9 (C(O) N). 195Pt NMR, d: −2166 (765 Hz). FAB+-MS,
=
m/z: 650 [M]+. Anal. Calcd for C17H28N4O6Cl2Pt: C, 31.39; H,
6 R. A. Michelin, M. Mozzon and R. Bertani, Coord. Chem. Rev., 1996,
147, 299.
7 V. Yu. Kukushkin, D. Tudela and A. J. L. Pombeiro, Coord. Chem. Rev.,
1996, 156, 333.
4.34; N, 8.61. Found: C, 31.17; H, 4.23; N, 8.59.
=
=
cis-PtCl2{N C(CH2CO2Me)ONC(H)(CH2CH2CMe2)} {NH
8 (a) P. V. Gushchin, N. A. Bokach, K. V. Luzyanin, A. A. Nazarov, M.
Haukka and V. Yu. Kukushkin, Inorg. Chem., 2007, 46, 1684; (b) G. H.
Sarova, N. A. Bokach, A. A. Fedorov, M. N. Berberan-Santos, V. Yu.
Kukushkin, M. Haukka, J. J. R. Frau´sto da Silva and A. J. L. Pombeiro,
Dalton Trans., 2006, 3798; (c) A. V. Khripun, V. Yu. Kukushkin, S. I.
Selivanov, M. Haukka and A. J. L. Pombeiro, Inorg. Chem., 2006, 45,
5073; (d) K. V. Luzyanin, V. Yu. Kukushkin, M. L. Kuznetsov, A. D.
Ryabov, M. Galanski, M. Haukka, E. V. Tretyakov, V. I. Ovcharenko,
M. N. Kopylovich and A. J. L. Pombeiro, Inorg. Chem., 2006, 45,
2296; (e) V. Yu. Kukushkin and A. J. L. Pombeiro, Inorg. Chim. Acta,
2005, 358, 1; (f) A. Bokach, V. Yu. Kukushkin, M. Haukka, J. J. R.
Frau´sto da Silva and A. J. L. Pombeiro, Inorg. Chem., 2003, 42, 3602;
(g) A. V. Makarycheva-Mikhailova, N. A. Bokach, V. Yu. Kukushkin,
=
C(CH2CO2Me)ON CMe2}] 13a. Yield: 80%. TLC on SiO2:
Rf = 0.73 (eluent CH2Cl2–Et2O (5 : 1)). IR (cm−1): 1746 (CO2Me),
1
=
1647 and 1666 (C N). H NMR, d: 1.13 and 1.30 (two s, 3H
each, Me), 1.60–1.84 (m, 2H, CH2), 2.01 and 2.03 (two s, 3H each,
=
CMe2), 2.29–2.36 (m, 1H, CH2), 2.90–2.94 (m, 1H, CH2), 3.78
and 3.79 (two s, 3H each, MeO), 3.92 (d, JHH 17.1 Hz, 1H, CH2),
4.11 (s, 2H, CH2), 4.24 (d, JHH 17.1 Hz, 1H, CH2), 5.55 (m, 1H,
N–CH–N), 8.13 (s, br, 1H, NH). 13C{ H} NMR, d: 17.9 and 22.3
1
=
( CMe2), 23.3 and 27.5 (Me groups), 31.1, 34.2, 39.9 and 40.0
(CH2), 53.4 and 53.5 (MeO), 71.5 (Me2C-N), 90.0 (N–CH–N),
This journal is
The Royal Society of Chemistry 2007
Dalton Trans., 2007, 3259–3266 | 3265
©