analyzed by Cr 2p core-level X-ray photoelectron spectroscopy
(XPS), which were fitted with spin-orbital split 2p3/2 and 2p1/2
components (see Supporting Information). The related spectrum
shows two sets of XPS peaks, with the 2p1/2 component
appearing at 584.1 and the 2p3/2 component appearing at 573.9
eV of the binding energy, respectively. These data are nearly in
accordance with the signals for the 2p components (583.5 eV for
Cr 2p1/2, and 574.3 eV for Cr 2p3/2) of Cr(0). These results may
indicate that the formation of Cr(0) by reducing CrCl3 with Mg
can be considered.
Jpn. 2020, 93, 759.
J. R. Dunetz, J. Magano, G. A. Weisenburger, Org. Process
Res. Dev. 2016, 20, 140.
A. Basha, M. Lipton, S. M. Weinreb, Tetrahedron Lett.
1977, 18, 4171.
W. Kurosawa, T. Kan, T. Fukuyama, J. Am. Chem. Soc.
2003, 125, 8112.
E. Ban, D. C. H. Bigg, G. Bertrand, J. Org. Chem. 1994,
59, 4035.
N. A. Stephenson, J. Zhu, S. H. Gellman, S. S. Stahl, J. Am.
Chem. Soc. 2009, 131, 10003.
5.
6.
7.
8.
9.
Mg
10. B. Gnanaprakasam, D. Milstein, J. Am. Chem. Soc. 2011,
133, 1682.
CrCl3
L
nCr
PhNH2
THF
11. A. Kumar, N. A. Espinosa-Jalapa, G. Leitus, Y. Diskin-
Posner, L. Avram, D. Milstein, Angew. Chem. Int. Ed. 2017,
56, 14992.
12. C. Han, J. P. Lee, E. Lobkovsky, J. A. Jr Porco, J. Am.
Chem. Soc. 2005, 127, 10039.
NHPh
PhNH2
– H2
NHPh
L
nCr NHPh
L
nCr
H
Mg
– 1/2 Mg(NHPh)2
O
EtOH
OEt
NHPh
13. M. Tobisu, N. Chatani, Acc. Chem. Res. 2015, 48, 1717.
14. D.-G. Yu, B.-J. Li, Z.-J. Shi, Acc. Chem. Res. 2010, 43,
1486.
L
nCr
Ar
PhNH2
OEt
15. J. Yamaguchi, K. Muto, K. Itami, Eur. J. Org. Chem. 2013,
19.
O
Cr
Ln
OEt
NHPh
L
nCr
16. J. Cornella, C. Zarate, R. Martin, Chem. Soc. Rev. 2014, 43,
8081.
Ar
17. F. Kakiuchi, M. Usui, S. Ueno, N. Chatani, S. Murai, J. Am.
Chem. Soc. 2004, 126, 2706.
O
NHPh
18. M. Tobisu, T. Shimasaki, N. Chatani, Angew. Chem. Int.
Ed. 2008, 47, 4866.
19. K. Muto, J. Yamaguchi, K. Itami, J. Am. Chem. Soc.
2013, 135, 16384.
Ar
Figure 1. Proposed mechanism.
Based on previous results and our mechanistic studies, we
proposed that low-valent Cr could be formed by reduction of
CrCl3 with Mg,36,37 which may insertion into aniline in affording
the aminated Cr–H species (Figure 1). Hydrogen can be released
by reaction with another molecule of aniline. Reducing the
diaminated Cr by Mg can be considered for forming Mg(NHPh)2
and reactive Cr complex responsibility for the cleavage of acyl
C–O bonds, and delivering to the amide by reductive elimination
with affording the alkoxylated Cr, which may undergo a ligand
exchange with aniline in regeneration of reactive species.25
20. Z.-C. Cao, Z.-J. Shi, J. Am. Chem. Soc. 2017, 139, 6546.
21. M. C. Schwarzer, R. Konno, T. Hojo, A. Ohtsuki, K.
Nakamura, A. Yasutome, H. Takahashi, T. Shimasaki, M.
Tobisu, N. Chatani, S. Mori, J. Am. Chem. Soc. 2017, 139,
10347.
22. H. Kondo, T. Kochi, F. Kakiuchi, Org. Lett. 2017, 19, 794.
23. S. Shi, M. Szostak, Chem. Commun. 2017, 53, 10584.
24. G. Meng, P. Lei, M. Szostak, Org. Lett. 2017, 19, 2158.
25. L. Hie, N. F. F. Nathel, X. Hong, Y.-F. Yang, K. N. Houk,
N. K. Garg, Angew. Chem. Int. Ed. 2016, 55, 2810.
26. T. Ben Halima, J. K. Vandavasi, M. Shkoor, S. G. Newman,
ACS Catal. 2017, 7, 2176.
4. Conclusion
In summary, we have developed a chromium-catalyzed and
ligand-free amidation reaction between esters with anilines. It
provides a cost-effective, scalable and operationally simple
strategy to the synthesis of biologically interesting amide motifs.
The evolution of hydrogen was detected, which may favor the
process of forming reactive Cr species for the transformation.
Further Studies on synthesis and characterization of reactive Cr
complexes and expanding the scope of low-valent Cr catalysis
are underway in our laboratory.
27. T. B. Halima, J. Masson-Makdissi, S. G. Newman, Angew.
Chem. Int. Ed. 2018, 57, 12925.
28. A. Fürstner, Chem. Rev. 1999, 99, 991.
29. X. Zeng, Synlett 2020, 31, 205.
30. T. Ohshima, Y. Hayashi, K. Agura, Y. Fujii, A. Yoshiyama,
K. Mashima, Chem. Commun. 2012, 48, 5434.
31. G. Li, M. Szostak, Nat. Commun. 2018, 9, 4165.
32. Y. Liu, S. Shi, M. Achtenhagen, R. Liu, M. Szostak, Org.
Lett. 2017, 19, 1614.
33. C. W. Cheung, M. L. Ploeger, X. Hu, Nat. Commun. 2017,
8, 14878.
34. C. W. Cheung, N. Shen, S.-P. Wang, A. Ullah, X. Hu, J.-A.
Ma, Org. Chem. Front. 2019, 6, 756.
35. X. Cong, H. Tang, X. Zeng, J. Am. Chem. Soc. 2015, 137,
14367.
Acknowledgement
We thank the National Natural Science Foundation of
China (Nos. 21572175, 21871186 and 21971168) and the
Fundamental Research Funds for the Central Universities
(20826041D4117) for financial support of this research.
36. M. T. Mock, S. Chen, M. O’Hagan, R. Rousseau, W. G.
Dougherty, W. S. Kassel, R. M. Bullock, J. Am. Chem. Soc.
2013, 135, 11493.
37. J. Tang, L. L. Liu, S. Yang, X. Cong, M. Luo, X. Zeng, J.
Am. Chem. Soc. 2020, 142, 7715.
38. K. Murakami, H. Ohmiya, H. Yorimitsu, K. Oshima, Org.
Lett. 2007, 9, 1569.
39. A. K. Steib, O. M. Kuzmina, S. Fernandez, D. Flubacher,
References
1.
S. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54,
3451.
2.
3.
V. R. Pattabiraman, J. W. Bode, Nature 2011, 480, 471.
J. M. Humphrey, A. R. Chamberlin, Chem. Rev. 1997, 97,
2243.
4.
W. Muramatsu, T. Hattori, H. Yamamoto, Bull. Chem. Soc.