Inorg. Chem. 2007, 46, 8100−8101
Unprecedented Examples of Heterobimetallic Cerium(IV)
Disiloxanediolates
Stephan Giessmann, Steffen Blaurock, Volker Lorenz, and Frank T. Edelmann*
Chemisches Institut der Otto-Von-Guericke-UniVersita¨t Magdeburg, UniVersita¨tsplatz 2,
D-39106 Magdeburg, Germany
Received July 4, 2007
The first disiloxanediolate complexes of cerium(IV) are reported.
Starting from the readily available precursor (tBuO)3CeIV(NO3)(THF)2
bonds is very scarce. To the best of our knowledge, Ce-
(OSiPh3)4(DME)x (0.5 < x < 1)6 and a cerium(IV) metal-
lasilsesquioxane complex7 are the only fully characterized
compounds of this type. We report here the preparation and
structural characterization of two unprecedented examples
of cerium(IV) disiloxanediolates.
(1), we prepared the novel heterobimetallic compounds [
SiO)2O}{K(THF)2
]2Ce(OtBu)2 (2) and [ (Ph2SiO)2O}2{(DME)-KOt-
Ce]2 (3) and structurally characterized them by
{(Ph2-
}
{
Bu}{(Ph2SiO2)K
}
X-ray diffraction.
As a suitable cerium(IV) precursor, we chose the readily
available alkoxide nitrate complex (tBuO)3CeIV(NO3)(THF)2
(1). Mixed-ligand complexes of this type were developed
by Evans et al. as soluble and versatile cerium(IV) reagents.8
Bright yellow (tBuO)3Ce(NO3)(THF)2 (1) is easily made by
allowing ceric ammonium nitrate, (NH4)2[Ce(NO3)6] (CAN),
to react with NaOtBu in a 1:5 molar ratio. In the first
experiment, 1 was treated with (Ph2SiOK)2O (made in situ
by deprotonation of 1,1,3,3-tetraphenyl-1,3-disiloxanediol9,10
with KN(SiMe3)2) in a molar ratio of 1:2 according to
Scheme 1. From this reaction, the novel heterobimetallic
potassium/cerium(IV) disiloxanediolate complex [{(Ph2-
SiO)2O}{K(THF)2}]2Ce(OtBu)2 (2) was isolated in the form
of yellow, block-shaped crystals in 81% yield (Scheme 1).
Its structure was studied by single-crystal X-ray diffraction
(Figure 1).
In the molecule of 2, two potassium disiloxanediolate
ligands are coordinated to cerium(IV) in a slightly bent
coordination geometry. Two t-butoxide ligands remain as
functionalizable groups coordinated to Ce. The central cerium
is in a distorted octahedral coordination environment. A very
similar distorted octahedral coordination of tetravalent cerium
was found in Ce(OSiPh3)4(DME)x.6 One phenyl ring of each
disiloxanediolate ligand is engaged in an intramolecular η1-
π-coordination to potassium (K(1)-C(22) 3.395(4) Å).
Phenyl-π-coordination to K+ has been observed, for example,
Because of their high oxidation potential, cerium(IV)
compounds are widely used in various areas of chemistry
and technology. Important fields of application include
organic synthesis,1 bioinorganic chemistry,2 materials sci-
ence,3 and industrial catalysis (automotive three-way cata-
lysts, oxygen storage, etc.).4 Thus there is a constant demand
for new, well-defined cerium(IV) species. Cerium(IV) alkox-
ides form a well-investigated class of compounds which are
of interest as precursors for the MOCVD production of thin
CeO2 layers.5 In sharp contrast, information about the
homologous cerium(IV) siloxides containing Ce-O-Si
* To whom correspondence should be addressed. E-mail: frank.
(1) For recent reviews, see: (a) Carrijo, R. M. C.; Romero, J. R. Quim.
NoVa 2000, 23, 331. (b) Das, A. K. Coord. Chem. ReV. 2001, 213,
307. (c) Nair, V.; Balagopal, L.; Rajan, R.; Mathew, J. Acc. Chem.
Res. 2004, 37, 21. (d) Dziegiec, J.; Domagala, S. Trends Inorg. Chem.
2005, 8, 43.
(2) For recent reviews, see: (a) Komiyama, M. Metal Ions Biol. Syst.
2003, 40, 463. (b) Yamamoto, Y.; Komiyama, M. Mater. Integr. 2005,
19, 55.
(3) Review: Jian, H.; Zhou, X.; Zhao, D. Huaxue Shiji 2006, 28, 279.
(4) For recent reviews, see: (a) Metal Ions in Biological Systems; Sigel,
A., Sigel, H., Eds.; Marcel Dekker, Inc.: New York, 2003; Vol. 40.
(b) Kaspar, J.; Fornasiero, P.; Graziani, M. Catal. Today 1999, 50,
285. (c) Trovarelli, A.; de Leitenburg, C.; Boaro, M.; Dolcetti, G.
Catal. Today 1999, 50, 353. (d) Kaspar, J.; Graziani, M.; Fornasiero,
P. In Handbook on the Physics and Chemistry of the Rare Earths;
Gschneidner, K. A., Jr., Eyring, L., Eds.; Elsevier Science B.V.:
Amsterdam, 2000; Vol. 29, p 159. (d) Duprez, D.; Descorme, C. Catal.
Sci. Ser. 2002, 2, 243. (e) Shelef, M.; Graham, G. W.; McCabe, R.
W. Catal. Sci. Ser. 2002, 2, 343. (f) Primet, M.; Garbowski, E. Catal.
Sci. Ser. 2002, 2, 407. (g) Imamura, S. Catal. Sci. Ser. 2002, 2, 431.
(h) Kaspar, J.; Fornasiero, P. J. Solid State Chem. 2003, 171, 19. (i)
Wang, M.; Wei, W.; Luo, L. Huagong Jinzhan 2006, 25, 517.
(5) (a) Bradley, D. C.; Holloway, H. Can. J. Chem. 1962, 40, 1176. (b)
Sen, A.; Stecher, H. A.; Rheingold, A. L. Inorg. Chem. 1992, 31,
473. (c) Hubert-Pfalzgraf, L. G.; El Khokh, N.; Daran, J. C. Polyhedron
1992, 11, 59. (d) Hubert-Pfalzgraf, L. G.; Guillon, H. Appl. Organomet.
Chem. 1998, 12, 221. (e) Suh, S.; Guan, J.; Miinea, L. A.; Lehn, J.-S.
M.; Hoffman, D. M. Chem. Mater. 2004, 16, 1667.
(6) Gradeff, P. S.; Yunlu, K.; Gleizes, A.; Galy, J. Polyhedron 1989, 8,
1001.
(7) Gun’ko, Yu. K.; Reilly, R.; Edelmann, F. T.; Stalke, D. Angew. Chem.
2001, 113, 1319; Angew. Chem., Int. Ed. 2001, 40, 1279.
(8) (a) Evans, W. J.; Deming, T. J.; Ziller, J. W. Organometallics 1989,
8, 1581. (b) Evans, W. J.; Deming, T. J.; Olofson, J. M.; Ziller, J. W.
Inorg. Chem. 1989, 28, 4027. (c) Evans, W. J.; Edinger, L. A.; Ziller,
J. W. Polyhedron 1999, 18, 1475.
(9) Harris, G. I. J. Chem. Soc. 1963, 5978.
(10) Review: Murugavel, R.; Voigt, A.; Walawalkar, M. G.; Roesky, H.
W. Chem. ReV. 1996, 96, 2205.
8100 Inorganic Chemistry, Vol. 46, No. 20, 2007
10.1021/ic701320d CCC: $37.00
© 2007 American Chemical Society
Published on Web 09/01/2007